A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning in Admissions?: Use of Chi-Square Automatic Interaction Detection (CHAID) to Predict Matriculants to Physical Therapy School. | LitMetric

Machine Learning in Admissions?: Use of Chi-Square Automatic Interaction Detection (CHAID) to Predict Matriculants to Physical Therapy School.

J Allied Health

Dep. of Physical Medicine and Rehabilitation, Mayo Clinic School of Health Sciences, 200 First Street SW, Siebens 7 33-PPT, Rochester, MN 55905, USA. Tel 507-284-9547.

Published: September 2023

Purpose: Machine learning algorithms provide methods by which patterns in admissions data may be discovered that predict admissions yields in education programs. We used a chi-square automatic interaction detection (CHAID) analysis to examine characteristics that predict applicants most likely to matriculate into a physical therapy program after being admitted.

Methods: Data from applicants admitted to our physical therapy program from the 2015-2016 through 2021-2022 admissions cycles were evaluated (n=413). Variables included applicants' ages, grade point averages, graduate record examination (GRE) scores, admissions and behavioral interview scores, sex/gender, race/ethnicity, home state classification, undergraduate major classification, institutional classification, socioeconomic status, and first generation to college status. A CHAID algorithm identified which variables predicted matriculation after being admitted.

Results: Overall, 47.2% of admitted applicants matriculated. The CHAID algorithm generated a 3-level model with 5 terminal nodes that classified matriculants with 64.9% accuracy. Applicants more likely to matriculate than to decline an admission offer included in-state applicants and White/Caucasian border-state/out-of-state applicants with GPAs below 3.65.

Discussion: While findings are program-specific, the CHAID analysis provides a tool to analyze admissions data that admissions committees may use to analyze their admissions processes and outcomes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

physical therapy
12
machine learning
8
chi-square automatic
8
automatic interaction
8
interaction detection
8
detection chaid
8
admissions data
8
chaid analysis
8
applicants matriculate
8
therapy program
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!