Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of the P-M-P bite angle in diphosphine ligands on selectivity has been observed in various catalytic reactions. A better understanding of the ligand bite angle concept is important for the rational design of efficient catalytic systems. In the present work, the mechanism of cobalt-catalyzed C-H functionalization of aldehydes with enynes and how the diphosphine ligands alter regioselectivity were investigated by density functional theory (DFT) calculations. The catalytic cycle is initiated by the oxidative cyclization of enynes rather than the oxidative addition of aldehydes. Regioselectivity arises from competing σ-bond metathesis and migratory insertion steps, in which the steric effects of diphosphine ligands are the dominant factors influencing the activation barriers. The calculations indicate that σ-bond metathesis is more challenging and its feasibility is highly dependent on the ligand bite angle. The improved mechanistic understanding will enable further design of transition-metal-catalyzed selective cyclization reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt02570e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!