A personalized cortical atlas for functional regions of interest.

J Neurophysiol

Department of Psychology, The Ohio State University, Columbus, Ohio, United States.

Published: November 2023

Advances in functional MRI (fMRI) allow mapping an individual's brain function in vivo. Task fMRI can localize domain-specific regions of cognitive processing or functional regions of interest (fROIs) within an individual. Moreover, data from resting state (no task) fMRI can be used to define an individual's connectome, which can characterize that individual's functional organization via connectivity-based parcellations. However, can connectivity-based parcellations alone predict an individual's fROIs? Here, we describe an approach to compute individualized rs-fROIs (i.e., regions that correspond to given fROI constructed using only resting state data) for motor control, working memory, high-level vision, and language comprehension. The rs-fROIs were computed and validated using a large sample of young adults ( = 1,018) with resting state and task fMRI from the Human Connectome Project. First, resting state parcellations were defined across a sequence of resolutions from broadscale to fine-grained networks in a training group of 500 individuals. Second, 21 rs-fROIs were defined from the training group by identifying the rs network that most closely matched task-defined fROIs across all individuals. Third, the selectivity of rs-fROIs was investigated in a training set of the remaining 518 individuals. All computed rs-fROIs were indeed selective for their preferred category. Critically, the rs-fROIs had higher selectivity than probabilistic atlas parcels for nearly all fROIs. In conclusion, we present a potential approach to define selective fROIs on an individual-level circumventing the need for multiple task-based localizers. We compute individualized resting state parcels that identify an individual's own functional regions of interest (fROIs) for high-level vision, language comprehension, motor control, and working memory, using only their functional connectome. This approach demonstrates a rapid and powerful alternative for finding a large set of fROIs in an individual, using only their unique connectivity pattern, which does not require the costly acquisition of multiple fMRI localizer tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994647PMC
http://dx.doi.org/10.1152/jn.00108.2023DOI Listing

Publication Analysis

Top Keywords

resting state
20
functional regions
12
regions interest
12
task fmri
12
interest frois
8
frois individual
8
state task
8
individual's functional
8
connectivity-based parcellations
8
compute individualized
8

Similar Publications

Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity.

Brain Topogr

January 2025

Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases.

View Article and Find Full Text PDF

Objective: To study the biomechanical changes induced by differences in perioral force in patients with missing anterior maxillary teeth at rest via finite element analysis (FEA).

Methods: Using conical beam CT (CBCT) images of a healthy person, models of the complete maxillary anterior dental region (Model A) and maxillary anterior dental region with a missing left maxillary central incisor (Model B) were constructed. The labial and palatine alveolar bone and tooth surface of the bilateral incisor and cusp regions were selected as the application sites, the resting perioral force was applied perpendicular to the tissue surface, and the changes in maxillary stress and displacement after the perioral force was simulated were analyzed.

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) is a high-risk factor for dementia and dysphagia; therefore, early intervention is vital. The effectiveness of intermittent theta burst stimulation (iTBS) targeting the right dorsal lateral prefrontal cortex (rDLPFC) remains unclear.

Methods: Thirty-six participants with MCI were randomly allocated to receive real (n = 18) or sham (n = 18) iTBS.

View Article and Find Full Text PDF

Background: Thalamocortical functional and structural connectivity alterations may contribute to clinical phenotype of Autism Spectrum Disorder. As previous studies focused mainly on thalamofrontal connections, we comprehensively investigated between-group differences of thalamic functional networks and white matter pathways projecting also to temporal, parietal, occipital lobes and their associations with core and co-occurring conditions of this population.

Methods: A total of 38 children (19 with Autism Spectrum Disorder) underwent magnetic resonance imaging and behavioral assessment.

View Article and Find Full Text PDF

High-order network degree revealed shared and distinct features among schizophrenia, bipolar disorder and ADHD.

Neuroscience

January 2025

School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, China; National Demonstration Center for Experimental Mechanics Education, Xi'an Jiaotong University, Xi'an, China. Electronic address:

Schizophrenia (SCHZ), bipolar disorder (BD), and attention-deficit/hyperactivity disorder (ADHD) share clinical symptoms and risk genes, but the shared and distinct neural dynamic mechanisms remain inadequately understood. Degree is a fundamental and important graph measure in network neuroscience, and we here extended the degree to hierarchical levels based on eigenmodes and compared the resting-state brain networks of three disorders and healthy controls (HC). First, compared to HC, SCHZ and BD patients exhibited substantially overlapped abnormalities in brain networks, wherein BD patients displayed more significant alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!