Psoriasis is a common inflammatory skin disease characterized by abnormal proliferation of epidermal keratinocytes and massive infiltration of inflammatory cells. Many kinds of cells, including keratinocytes, T lymphocytes, dendritic cells, neutrophils, and macrophages, are reported to play critical roles in the pathogenesis and progression of psoriasis. However, to date, the role of each kind of cell in the pathogenesis and development of psoriasis has not been systematically reviewed. In addition, although antibodies developed targeting cytokines (e.g. IL-23, IL-17A, and TNF-α) released by these cells have shown promising results in the treatment of psoriasis patients, these targeted antibodies still do not cure psoriasis and only provide short-term relief of symptoms. Furthermore, long-term use of these antibodies has been reported to have adverse physical and psychological effects on psoriasis patients. Therefore, gaining a deeper understanding of the cellular and molecular pathogenesis of psoriasis and providing new thoughts on the development of psoriasis therapeutic drugs is of great necessity. In this review, we summarize the roles of various cells involved in psoriasis, aiming to provide new insights into the pathogenesis and development of psoriasis at the cellular level and hoping to provide new ideas for exploring new and effective psoriasis treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506593 | PMC |
http://dx.doi.org/10.2147/CCID.S420850 | DOI Listing |
JMIR Res Protoc
January 2025
Department of Dermatology, Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, Madrid, Spain.
Background: Psoriasis is an inflammatory disease primarily treated through molecular-targeted therapies. However, emerging evidence suggests that dietary interventions may also play a role in managing inflammation associated with this condition. The Mediterranean diet (MedDiet), prevalent in southern European countries, has been widely recognized for its ability to reduce cardiovascular mortality, largely due to its anti-inflammatory properties.
View Article and Find Full Text PDFCutis
December 2024
Department of Dermatology, Wake Forest University, Winston-Salem, North Carolina.
Cutis
December 2024
Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn. Jennifer Wang and Dr. Jagdeo also are from the Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn. Dr. Derrick also is from NYC Health + Hospitals/Kings County, Brooklyn.
Sci Adv
January 2025
Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA.
Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration.
View Article and Find Full Text PDFDermatol Ther (Heidelb)
January 2025
Department of Dermatology, University of Tsukuba, Tsukuba, Japan.
Introduction: Patients with moderate-to-severe atopic dermatitis (AD), a body surface area (BSA) of ≤ 40%, and an itch numerical rating scale (NRS) score of ≥ 7 ("BARI itch dominant") have been characterized as an important group to consider for the oral janus kinase (JAK) 1/2 inhibitor baricitinib (BARI). Herein we aim to evaluate quality of life (QoL) and functioning outcomes in adult patients with BSA ≤ 40% and itch NRS ≥ 7 at baseline (BL) who received BARI 4 mg in the topical corticosteroid (TCS) combination trial BREEZE-AD7.
Materials: BREEZE-AD7 was a randomized, double-blind, placebo-controlled, parallel-group outpatient study involving adult patients with moderate-to-severe AD who received once-daily placebo or 2-mg or 4-mg BARI in combination with TCS for 16 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!