Pancreatic cancer is one of the most lethal malignancies with an increasing incidence and a high mortality rate, due to its rapid progression, invasiveness, and resistance to anticancer therapies. In this work, we evaluated the antiproliferative and antimigratory activities of the two organometallic compounds, [Pt(-CH-OMe)(DMSO)(phen)]Cl () and [Pt(-CH-OEt)(DMSO)(phen)]Cl (), on three human pancreatic ductal adenocarcinoma cell lines with different sensitivity to cisplatin (Mia PaCa-2, PANC-1, and YAPC). The two cationic analogues showed superimposable antiproliferative effects on the tested cells, without significant differences depending on alkyl chain length (Me or Et). On the other hand, they demonstrated to be more effective than cisplatin, especially on YAPC cancer cells. For the interesting cytotoxic activity observed on YAPC, further biological assays were performed, on this cancer cell line, to evaluate the apoptotic and antimetastatic properties of the considered platinum compounds ( and ). The cytotoxicity of and compounds appeared to be related to their intracellular accumulation, which was much faster than that of cisplatin. Both and compounds significantly induced apoptosis and cell cycle arrest, with a high accumulation of sub-G1 phase cells, compared to cisplatin. Moreover, phenanthroline-containing complexes caused a rapid loss of mitochondria membrane potential, ΔΨ, if compared to cisplatin, probably due to their cationic and lipophilic properties. On 3D tumor spheroids, and significantly reduced migrated area more than cisplatin, confirming an antimetastatic ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506884PMC
http://dx.doi.org/10.1155/2023/5564624DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
8
cancer cell
8
cell lines
8
compared cisplatin
8
cisplatin
6
evaluation antitumor
4
antitumor effects
4
effects platinum-based
4
platinum-based [pt-ch-ordmsophen]
4
[pt-ch-ordmsophen] r = me
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!