Stealth technology advances in radar-absorbing materials (RAMs) continue to grow rapidly. Barium hexaferrite is the best candidate for RAMs applications. Manganese dioxide (MnO) is a transition metal with high dielectric loss and can be used as a booster for changing polarization and reducing reflection loss. The advantages of BaFeO and MnO can be combined in a core-shell BaFeO@MnO composite to improve the material's performance. MnO composition, temperature, hydrothermal holding time, and sample thickness all have an impact on the core-shell structure. In this study, a core-shell BaFeO@MnO composite is synthesized in two stages: molten salt synthesis to produce BaFeO as the core and hydrothermal synthesis to synthesize MnO as the shell. In the hydrothermal synthesis, BaFeO and KMnO were mixed in deionized water using different mass ratios of BaFeO to KMnO (1 : 0.25, 1 : 0.5, 1 : 0.75, and 1 : 1). The main goal of the analysis was to figure out how well the hydrothermal synthesis method worked at different temperatures (140 °C, 160 °C, and 180 °C) and holding times (9 h, 12 h, and 15 h). The composite material was subjected to characterization using a vector network analyzer, specifically at thicknesses of 1.5 mm, 2 mm, 2.5 mm, and 3 mm. The hydrothermal temperature and composition ratio of BaFeO : MnO are the most influential parameters in reducing reflection loss. Accurate control of the parameters makes a BaFeO@MnO core-shell composite structure with a lot of sheets. The structure is capable of absorbing 99.99% of electromagnetic waves up to a sample thickness of 1.5 mm. The novelty of this study is its ability to achieve maximal absorptions on a sample with minimal thickness through precise parametric control. This characteristic makes it highly suitable for practical applications, such as performing as an anti-radar coating material. BaFeO@MnO demonstrates performance as a reliable electromagnetic wave absorber material with simple fabrication, producing absorption at C and X band frequencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505901 | PMC |
http://dx.doi.org/10.1039/d3ra05114e | DOI Listing |
RSC Adv
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
Water contamination is a result of the excessive use of antibiotics nowadays. Owing to this environmental toxicity, photocatalytic degradation is the primary approach to non-biological degradation for their removal. In this context, zerovalent Bi-doped g-CN/BiMoO [g-CN/Bi@BiMoO] ternary nanocomposite was prepared using the wet impregnation method.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.
Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).
ACS Omega
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Mechanical Engineering, Yeungnam University Gyeongsan-si 38451 Gyeongbuk Republic of Korea
In this study, dye/polymer matrix-stabilized β-FeOOH nanomaterials were fabricated for therapeutic applications. Rh-B/F127@β-FeOOH nanomaterials were synthesized using two different methods: co-precipitation (CoP) and hydrothermal (HT) methods. The as-synthesized nanoparticles were characterized using various spectroscopic techniques, including FT-IR, UV-Vis, PL, XRD, HR-TEM, and XPS analysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing Tech University, College of Chemical Engineering, Nanjing, CHINA.
The wide application of zeolite Y in petrochemical industry is well known as one of the milestones in zeolite chemistry and heterogeneous catalysis. However, the traditional organic-free synthesis typically produces (hydro)thermally unstable zeolite Y with Si/Al atomic ratio (SAR) less than 2.5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!