The green microalga Dunaliella salina hyperaccumulates β-carotene in the chloroplast, which turns its cells orange. This does not occur in the sister species Dunaliella tertiolecta. However, the molecular mechanisms of β-carotene hyperaccumulation were still unclear. Here, we discovered the reasons for β-carotene hyperaccumulation by comparing the morphology, physiology, genome, and transcriptome between the carotenogenic D. salina and the noncarotenogenic D. tertiolecta after transfer to high light. The differences in photosynthetic capacity, cell growth, and the concentration of stored carbon suggest that these species regulate the supply and utilization of carbon differently. The number of β-carotene-containing plastid lipid globules increased in both species, but much faster and to a greater extent in D. salina than in D. tertiolecta. Consistent with the accumulation of plastid lipid globules, the expression of the methyl-erythritol-phosphate and carotenoid biosynthetic pathways increased only in D. salina, which explains the de novo synthesis of β-carotene. In D. salina, the concomitantly upregulated expression of the carotene globule proteins suggests that hyperaccumulation of β-carotene also requires a simultaneous increase in its sink capacity. Based on genomic analysis, we propose that D. salina has genetic advantages for routing carbon from growth to carotenoid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14724DOI Listing

Publication Analysis

Top Keywords

β-carotene hyperaccumulation
12
dunaliella salina
8
dunaliella tertiolecta
8
high light
8
plastid lipid
8
lipid globules
8
salina
7
dunaliella
5
β-carotene
5
deciphering β-carotene
4

Similar Publications

Arsenic modifies the microbial community assembly of soil-root habitats in .

ISME Commun

January 2025

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.

, renowned for its ability to hyperaccumulate arsenic, presents a promising solution to the escalating issue of global soil arsenic contamination. This fern cultivates a unique underground microbial community to enhance its environmental adaptability. However, our understanding of the assembly process and the long-term ecological impacts of this community remains limited, hindering the development of effective soil remediation strategies.

View Article and Find Full Text PDF

Previous research on cadmium (Cd) focused on toxicity, neglecting hormesis and its mechanisms. In this study, pakchoi seedlings exposed to varying soil Cd concentrations (CK, 5, 10, 20, 40 mg/kg) showed an inverted U-shaped growth trend (hormesis characteristics): As Cd concentration increases, biomass exhibited hormesis character (Cd5) and then disappear (Cd40). ROS levels rose in both Cd treatments, with Cd5 being intermediate between CK and Cd40.

View Article and Find Full Text PDF

Specific Enrichment of Carrying Microorganisms with Nitrogen Fixation and Dissimilatory Nitrate Reduction Function Enhances Arsenic Methylation in Plant Rhizosphere Soil.

Environ Sci Technol

January 2025

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China.

Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of , a potential As hyperaccumulator. was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment.

View Article and Find Full Text PDF

Comparative metabolomic analysis of Haematococcus pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions.

World J Microbiol Biotechnol

January 2025

Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China.

Revealing the differences of metabolite profiles of H. pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions was the key issues of the present study. To investigate the optimum NaCl and NaNO concentration and the corresponding metabolic characteristic related to the astaxanthin accumulation in H.

View Article and Find Full Text PDF

Soil polluted system shapes endophytic fungi communities associated with : a field experiment.

PeerJ

January 2025

Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China.

With the expansion of the mining industry, environmental pollution from microelements (MP) and red mud (RM) has become a pressing issue. While bioremediation offers a cost-effective and sustainable solution, plant growth in these polluted environments remains difficult. is one of the few plants capable of surviving in RM-affected soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!