Symbiotic mutualisms are essential to ecosystems and numerous species across the tree of life. For reef-building corals, the benefits of their association with endosymbiotic dinoflagellates differ within and across taxa, and nutrient exchange between these partners is influenced by environmental conditions. Furthermore, it is widely assumed that corals associated with symbionts in the genus tolerate high thermal stress at the expense of lower nutrient exchange to support coral growth. We traced both inorganic carbon (HCO) and nitrate (NO) uptake by divergent symbiont species and quantified nutrient transfer to the host coral under normal temperatures as well as in colonies exposed to high thermal stress. Colonies representative of diverse coral taxa associated with or spp. exhibited similar nutrient exchange under ambient conditions. By contrast, heat-exposed colonies with experienced less physiological stress than conspecifics with spp. while high carbon assimilation and nutrient transfer to the host was maintained. This discovery differs from the prevailing notion that these mutualisms inevitably suffer trade-offs in physiological performance. These findings emphasize that many host-symbiont combinations adapted to high-temperature equatorial environments are high-functioning mutualisms; and why their increased prevalence is likely to be important to the future productivity and stability of coral reef ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509592 | PMC |
http://dx.doi.org/10.1098/rspb.2023.1403 | DOI Listing |
Ecol Lett
January 2025
State Key Laboratory of Crop Stress Biology in Arid Areas, Shanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.
Microbial traits are critical for carbon sequestration and degradation in terrestrial ecosystems. Yet, our understanding of the relationship between carbon metabolic strategies and genomic traits like genome size remains limited. To address this knowledge gap, we conducted a global-scale meta-analysis of 2650 genomes, integrated whole-genome sequencing data, and performed a continental-scale metagenomic field study.
View Article and Find Full Text PDFWater Res
January 2025
MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Anaerobic digestion (AD) viruses have gained recognition as significant regulators of microbial interactions within AD communities, yet their ecological roles remain largely unexplored. In this study, we investigated the ecological roles of AD viruses in regulating microbial interactions among syntrophic hosts. We recovered 3921 diverse viral sequences from four full-scale anaerobic digesters and confirmed their widespread presence across 127 global metagenomic sampling sites (with >95 % sequence similarity), underscoring the ubiquity of prokaryotic viruses in AD-related systems.
View Article and Find Full Text PDFNat Geosci
November 2024
National Oceanography Centre, Southampton, UK.
The Southern Ocean, a region highly vulnerable to climate change, plays a vital role in regulating global nutrient cycles and atmospheric CO via the biological carbon pump. Diatoms, photosynthetically active plankton with dense opal skeletons, are key to this process as their exoskeletons are thought to enhance the transfer of particulate organic carbon to depth, positioning them as major vectors of carbon storage. Yet conflicting observations obscure the mechanistic link between diatoms, opal and particulate organic carbon fluxes, especially in the twilight zone where greatest flux losses occur.
View Article and Find Full Text PDFJ Comp Physiol B
January 2025
Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Elasmobranchs are commonly carnivores and are important in energy transfer across marine ecosystems. Despite this, relatively few studies have examined the physiological underpinnings of nutrient acquisition in these animals. Here, we investigated the mechanisms of uptake at the spiral valve intestine for two representative amino acids (-alanine, -leucine) and one representative fatty acid (oleic acid), each common to the diet of a carnivore, the Pacific spiny dogfish (Squalus suckleyi).
View Article and Find Full Text PDFMicrobiome
January 2025
Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
Background: Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!