Purpose: Orodispersible tablets (orally disintegrating tablets, ODTs) have been used in pharmacotherapy for over 20 years since they overcome the problems with swallowing solid dosage forms. The successful formula manufactured by direct compression shall ensure acceptable mechanical strength and short disintegration time. Our research aimed to develop ODTs containing bromhexine hydrochloride suitable for registration in accordance with EMA requirements.

Methods: We examined the performance of five multifunctional co-processed excipients, i.e., F-Melt® C, F-Melt® M, Ludiflash®, Pharmaburst® 500 and Prosolv® ODT G2 as well as self-prepared physical blend of directly compressible excipients. We tested powder flow, true density, compaction characteristics and tableting speed sensitivity.

Results: The manufacturability studies confirmed that all the co-processed excipients are very effective as the ODT formula constituents. We noticed superior properties of both F-Melt's®, expressed by good mechanical strength of tablets and short disintegration time. Ludiflash® showed excellent performance due to low works of plastic deformation, elastic recovery and ejection. However, the tablets released less than 30% of the drug. Also, the self-prepared blend of excipients was found sufficient for ODT application and successfully transferred to production scale. Outcome of the scale-up trial revealed that the tablets complied with compendial requirements for orodispersible tablets.

Conclusions: We proved that the active ingredient cannot be absorbed in oral cavity and its dissolution profiles in media representing upper part of gastrointestinal tract are similar to marketed immediate release drug product. In our opinion, the developed formula is suitable for registration within the well-established use procedure without necessity of bioequivalence testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746752PMC
http://dx.doi.org/10.1007/s11095-023-03605-xDOI Listing

Publication Analysis

Top Keywords

co-processed excipients
12
bromhexine hydrochloride
8
orally disintegrating
8
disintegrating tablets
8
tablets odts
8
mechanical strength
8
short disintegration
8
disintegration time
8
suitable registration
8
tablets
6

Similar Publications

Kollidon® SR: Formulation techniques and drug delivery applications.

Int J Pharm

January 2025

Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.

Kollidon® SR is one of the recent versatile coprocessed excipients in the formulation of modified-release dosage forms. It is prepared by co-spray drying aqueous dispersions of polyvinylacetate and polyvinylpyrrolidone. This article gives a critical review of the physicochemical attributes and technological properties of Kollidon® SR.

View Article and Find Full Text PDF

Evaluation of the Potential of Novel Co-Processed Excipients to Enable Direct Compression and Modified Release of Ibuprofen.

Pharmaceutics

November 2024

Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.

: Improving the production rates of modern tablet presses places ever greater demands on the performance of excipients. Although co-processing has emerged as a promising solution, there is still a lack of directly compressible excipients for modified-release formulations. The aim of the present study was to address this issue by investigating the potential of novel co-processed excipients for the manufacture of modified-release tablets containing ibuprofen.

View Article and Find Full Text PDF

Silicified microcrystalline cellulose from renewable banana pseudostem: Physicochemical and functional analysis.

Int J Biol Macromol

December 2024

Department of Pharmaceutical Science, Assam University, Silchar, Assam 788011, India. Electronic address:

Microcrystalline cellulose (MCC) has been isolated from numerous sources through acid hydrolysis of mercerized cellulose. Due to the fibrous shape, its poor flow ability and lower compactibility, MCC is often co-processed with other excipients to improve its functional properties. Musa MCC was isolated from the pseudostem of Musa balbisiana and silicified with 2 % silicon dioxide (SMCC) through homogenization followed by filtration and oven drying.

View Article and Find Full Text PDF

Background/objectives: Hydroxypropyl methylcellulose (HPMC) is one of the most commonly used hydrophilic polymers in formulations of matrix tablets for controlled release applications. However, HPMC attracts moisture and poses issues with drug stability in formulations containing moisture-sensitive drugs.

Methods: Herein, the moisture sorption behavior of excipients and drug stability using aspirin as the model drug in matrix tablets were evaluated, using HPMC and the newly developed mannitol-coated HPMC, under accelerated stability conditions (40 °C, 75% relative humidity) with open and closed dishes.

View Article and Find Full Text PDF

Poor water solubility is an important challenge in the development of oral patient-friendly solid dosage forms. This study aimed to prepare orodispersible tablets with solid dispersions of a poorly water-soluble drug fenofibrate and a co-processed excipient consisting of mesoporous silica and isomalt. This co-processed excipient, developed in a previous study, exhibited improved flow and compression properties compared to pure silica while maintaining a high specific surface area for drug adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!