Aims: Dasatinib, a second-generation tyrosine kinase inhibitor of BCR-ABL 1, used for first-line treatment of Philadelphia chromosome-positive chronic myeloid leukemia (CML), exhibits high pharmacokinetic (PK) variability. However, its PK data in Chinese patients with CML remains rarely reported to date. Thus, we developed a population pharmacokinetic (PPK) model of dasatinib in Chinese patients and identified the covariate that could explain the individual variability of PK for optimal individual administration.
Methods: PPK modeling for dasatinib was performed based on 754 plasma concentrations obtained from 140 CML patients and analysis of various genetic and physicochemical parameters. Modeling was performed with nonlinear mixed-effects (NLME) using Phoenix NLME. The finally developed model was evaluated using internal and external validation. Monte Carlo simulations were used to predict drug exposures at a steady state for various dosages.
Results: The PK of dasatinib were well described by a two-compartment with a log-additive residual error model. Patients in the current study had a relatively low estimate of CL/F (126 L/h). A significant association was found between the covariate of age and CL/F of dasatinib, which was incorporated into the final model. None of the genetic factors was confirmed as a significant covariate for dasatinib. The results of external validation with 140 samples from 36 patients were acceptable. Simulation results showed significantly higher exposures in elderly patients.
Conclusions: This study's findings suggested that low-dose dasatinib would be better suited for Chinese patients, and the dosage can be appropriately reduced according to the increase of age, especially for the elderly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-023-03603-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!