Slow wave activity across sleep-night could predict levodopa-induced dyskinesia.

Sci Rep

Parkinson Disease and Movement Disorder Center, Neurocenter of Southern Switzerland, EOC, Via Tesserete 46, 6903, Lugano, Switzerland.

Published: September 2023

A disruption in the slow wave activity (SWA) mediated synaptic downscaling process features Parkinson's disease (PD) patients presenting levodopa-induced dyskinesia (LID). To corroborate the role of SWA in LID development, 15 PD patients with LID, who underwent a polysomnography before LID's appearance, were included. Slow wave sleep epochs were extracted, combined and segmented into early and late sleep. SWA power was calculated. A linear regression model established that the SWA overnight decrease could predict the time to the emergence of LID. Our finding supports the link between SWA-mediated synaptic downscaling and the development of LID. If confirmed, it could pave the way to the study of possible sleep targeted therapies able to protect PD patients from LID development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509191PMC
http://dx.doi.org/10.1038/s41598-023-42604-1DOI Listing

Publication Analysis

Top Keywords

slow wave
12
wave activity
8
levodopa-induced dyskinesia
8
synaptic downscaling
8
lid development
8
patients lid
8
lid
6
activity sleep-night
4
sleep-night predict
4
predict levodopa-induced
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Radiology, miami, FL, USA.

Background: Clearance of brain toxins occurs during sleep, although the mechanism remains unknown. Previous studies implied that the intracranial aqueductal cerebrospinal fluid (CSF) oscillations are involved, but no mechanism was suggested. The rationale for focusing on the aqueductal CSF oscillations is unclear.

View Article and Find Full Text PDF

Background: Altered neuronal timing and synchrony are biomarkers for Alzheimer's disease (AD) and correlate with memory impairments. Electrical stimulation of the fornix, the main fibre bundle connecting the hippocampus to the septum, has emerged as a potential intervention to restore network synchrony and memory performance in human AD and mouse models. However, electrical stimulation is non-specific and may partially explain why fornix stimulation in AD patients has yielded mixed results.

View Article and Find Full Text PDF

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

Background -Smoking is associated with arrhythmia and sudden cardiac death, but the biological mechanisms remain unclear. In electrocardiogram (ECG) recordings abnormal durations of ventricular repolarization (QT interval), atrial depolarization (P wave), and atrioventricular depolarization (PR interval and segment), predict cardiac arrhythmia and mortality. Previous analyses of the National Health and Nutrition Examination Survey (NHANES) database for associations between smoking and ECG abnormalities were incomplete.

View Article and Find Full Text PDF

Background: This study explored the potential of electrogastrography (EGG) and heart rate variability (HRV) as psychophysiological markers in experimental pain research related to the gut-brain axis. We investigated responses to the experience of pain from the visceral (rectal distension) and somatic (cutaneous heat) pain modalities, with a focus on elucidating sex differences in EGG and HRV responses.

Methods: In a sample of healthy volunteers (29 males, 43 females), EGG and ECG data were collected during a baseline and a pain phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!