A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mesoporous Nano-Badminton with Asymmetric Mass Distribution: How Nanoscale Architecture Affects the Blood Flow Dynamics. | LitMetric

Mesoporous Nano-Badminton with Asymmetric Mass Distribution: How Nanoscale Architecture Affects the Blood Flow Dynamics.

J Am Chem Soc

Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.

Published: October 2023

While the nanobio interaction is crucial in determining nanoparticles' in vivo fate, a previous work on investigating nanoparticles' interaction with biological barriers is mainly carried out in a static state. Nanoparticles' fluid dynamics that share non-negligible impacts on their frequency of encountering biological hosts, however, is seldom given attention. Herein, inspired by badmintons' unique aerodynamics, badminton architecture FeO&mPDA (FeO = magnetite nanoparticle and mPDA = mesoporous polydopamine) Janus nanoparticles have successfully been synthesized based on a steric-induced anisotropic assembly strategy. Due to the "head" FeO having much larger density than the mPDA "cone", it shows an asymmetric mass distribution, analogous to real badminton. Computational simulations show that nanobadmintons have a stable fluid posture of mPDA cone facing forward, which is opposite to that for the real badminton. The force analysis demonstrates that the badminton-like morphology and mass distribution endow the nanoparticles with a balanced motion around this posture, making its movement in fluid stable. Compared to conventional spherical FeO@mPDA nanoparticles, the Janus nanoparticles with an asymmetric mass distribution have straighter blood flow trails and ∼50% reduced blood vessel wall encountering frequency, thus providing doubled blood half-life and ∼15% lower organ uptakes. This work provides novel methodology for the fabrication of unique nanomaterials, and the correlations between nanoparticle architectures, biofluid dynamics, organ uptake, and blood circulation time are successfully established, providing essential guidance for designing future nanocarriers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c07097DOI Listing

Publication Analysis

Top Keywords

mass distribution
16
asymmetric mass
12
blood flow
8
janus nanoparticles
8
real badminton
8
blood
5
mesoporous nano-badminton
4
nano-badminton asymmetric
4
mass
4
distribution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!