A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait.

J Biomech

Department of Kinesiology and Sport Sciences, University of Miami, Miami, FL, United States; Department of Physical Therapy, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Industrial and Systems Engineering, University of Miami, Miami, FL, United States. Electronic address:

Published: October 2023

Vision-based methods using RGB inputs for human pose estimation have grown in recent years but have undergone limited testing in clinical and biomechanics research areas like gait analysis. The purpose of the present study was to compare lower extremity kinematics during overground gait between a traditional marker-based approach and a commercial multi-view markerless system in a sample of subjects including young adults, older adults, and adults diagnosed with Parkinson's disease. A convenience sample of 35 adults between the age of 18-85 years were included in this study, yielding a total of 114 trials and 228 gait cycles that were compared between systems. A total of 30 time normalized waveforms, including three-dimensional joint centers, segment angles, and joint angles were compared between systems using root mean-squared error (RMSE), range of motion difference (ΔROM), Pearson correlation coefficients (r), and interclass correlation coefficients (ICC). RMSEs for joint center positions were less than 28 mm in all joints with correlations indicating good to excellent agreement. RMSEs for segment and joint angles were in range of previous results, with highest agreement between systems in the sagittal plane. ΔROM differences were within reference values that characterize clinical groups like Parkinson's disease, stroke, or knee osteoarthritis. Further improvements in pelvis tracking, markerless keypoint model definitions, and standardization of comparison study protocols are needed. Nevertheless, markerless solutions seem promising toward unrestricted motion analysis in biomechanics research and clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2023.111793DOI Listing

Publication Analysis

Top Keywords

overground gait
8
parkinson's disease
8
compared systems
8
joint angles
8
correlation coefficients
8
comparison three-dimensional
4
three-dimensional kinematics
4
markerless
4
kinematics markerless
4
markerless marker-based
4

Similar Publications

NONAN GaitPrint: An IMU gait database of healthy older adults.

Sci Data

January 2025

Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.

The continued effort to study gait kinematics and the increased interest in identifying individuals based on their gait patterns could be strengthened by the inclusion of data from older groups. To address this need and complement our previous database on healthy young adults, we present an addition to the Nonlinear Analysis Core (NONAN) GaitPrint database. We offer full-body inertial measurement data during self-paced overground walking on a 200 m indoor track of 41 older adults (56 + years old; 20 men and 21 women; age: 64.

View Article and Find Full Text PDF

Gait disturbance is one of the most common symptoms in patients with Parkinson's disease (PD) that is closely associated with poor clinical outcomes. Recently, video-based human pose estimation (HPE) technology has attracted attention as a cheaper and simpler method for performing gait analysis than marker-based 3D motion capture systems. However, it remains unclear whether video-based HPE is a feasible method for measuring temporospatial and kinematic gait parameters in patients with PD and how this function varies with camera position.

View Article and Find Full Text PDF

Increasing thigh extension with haptic feedback affects leg coordination in young and older adult walkers.

J Biomech

January 2025

Biorobotics and Biomechanics Lab, Department of Mechanical Engineering, University of Maine, Orono, 04469, ME, United States of America. Electronic address:

Interlimb coordination can be used as a metric to study the response of the neuromuscular system to mechanical perturbations and behavioral information. Behavioral information providing haptic feedback on thigh angle has been shown to increase stride length and consequently walking speed, but the effect of such feedback on limb coordination has not been determined. The current work investigates the effects of this feedback on lower-limb coordination and examines if such effects are dependent on the age of the walker.

View Article and Find Full Text PDF

Millions of individuals surviving a stroke have lifelong gait impairments that reduce their personal independence and quality of life. Reduced walking speed is one of the major problems limiting community mobility and reintegration. Previous studies have shown positive effect of robot-assisted gait training utilizing hip exoskeletons for individuals with gait impairments due to a stroke, leading to increased walking speed in post-treatment compared to pre-treatment assessments.

View Article and Find Full Text PDF

During their daily lives humans are often confronted with sustained cognitive activities (SCA) leading to state fatigue, a psychobiological state characterized by a decrease in cognitive and/or motor performance and/or an increase in perception of fatigue. It was recently shown that performing SCA can impair overground dual-task gait performance in older adults, but it is currently unknown whether there is a task- and/or age-specific modulation in gait performance during treadmill walking. Therefore, the effect of a SCA on single- and dual-task treadmill walking performance was investigated in young and old adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!