Uncertainty quantification of the remaining useful life (RUL) for degraded systems under the big data era has been a hot topic in recent years. A general idea is to execute two separate steps: deep-learning-based health indicator (HI) construction and stochastic process-based degradation modeling. However, there exists a critical matching defect between the constructed HI and a degradation model, which seriously affects the RUL prediction accuracy. Toward this end, this article proposes an interactive prognosis framework between deep learning and a stochastic process model for the RUL prediction. First, we resort to stacked contractive autoencoders to fuse multiple sensor information of historical systems for constructing the HI in a typical unsupervised manner. Then, considering the nonlinear characteristic of the constructed HI, an exponential-like degradation model is introduced to construct its degradation evolving model, and theoretical expressions of the prediction results are derived under the concept of the first hitting time. Furthermore, we design an optimization objective function by integrating the HI construction and degradation modeling for the RUL prediction. To minimize the designed objective function of the proposed interactive prognosis framework, a gradient descent algorithm is employed to update the model parameters. Based on the well-trained interactive prognosis model, we can obtain the HI of a field system from stacked contractive autoencoders with sensor data and the probability density function (pdf) of the predicted RUL on the basis of the estimated parameters. Finally, the effectiveness and superiority of the proposed interactive prognosis method are verified by two case studies associated with turbofan engines.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3310482DOI Listing

Publication Analysis

Top Keywords

interactive prognosis
20
prognosis framework
12
rul prediction
12
framework deep
8
deep learning
8
learning stochastic
8
stochastic process
8
process model
8
remaining life
8
degradation modeling
8

Similar Publications

The ARCR_Pred study was initiated to document and predict the safety and effectiveness of arthroscopic rotator cuff repair (ARCR) in a representative Swiss patient cohort. In the present manuscript, we aimed to describe the overall and baseline characteristics of the study, report on functional outcome data and explore case-mix adjustment and differences between public and private hospitals. Between June 2020 and November 2021, primary ARCR patients were prospectively enrolled in a multicenter cohort across 18 Swiss and one German orthopedic center.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.

View Article and Find Full Text PDF

Importance: Sleep disorders and mild cognitive impairment (MCI) commonly coexist in older adults, increasing their risk of developing dementia. Long-term tai chi chuan has been proven to improve sleep quality in older adults. However, their adherence to extended training regimens can be challenging.

View Article and Find Full Text PDF

Due to their high developmental diversity and different regulatory and functional roles, B cell subpopulations can promote or inhibit tumor growth. An orthotopic murine HNSCC model was applied to investigate the B cell composition and function in HNSCCs. Using flow cytometry approaches, cells from the spleen, lymph nodes and tumors were analyzed.

View Article and Find Full Text PDF

ST8SIA6 Sialylates CD24 to Enhance Its Membrane Localization in BRCA.

Cells

December 2024

Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24 has been observed in samples from patients with cancer. However, whether sialylation governs the subcellular localization of CD24 in cancer remains unclear, and the impact of CD24 expression and localization on the clinical prognosis of cancer remains controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!