A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Retinal Layer Segmentation in OCT Images With Boundary Regression and Feature Polarization. | LitMetric

The geometry of retinal layers is an important imaging feature for the diagnosis of some ophthalmic diseases. In recent years, retinal layer segmentation methods for optical coherence tomography (OCT) images have emerged one after another, and huge progress has been achieved. However, challenges due to interference factors such as noise, blurring, fundus effusion, and tissue artifacts remain in existing methods, primarily manifesting as intra-layer false positives and inter-layer boundary deviation. To solve these problems, we propose a method called Tightly combined Cross-Convolution and Transformer with Boundary regression and feature Polarization (TCCT-BP). This method uses a hybrid architecture of CNN and lightweight Transformer to improve the perception of retinal layers. In addition, a feature grouping and sampling method and the corresponding polarization loss function are designed to maximize the differentiation of the feature vectors of different retinal layers, and a boundary regression loss function is devised to constrain the retinal boundary distribution for a better fit to the ground truth. Extensive experiments on four benchmark datasets demonstrate that the proposed method achieves state-of-the-art performance in dealing with problems of false positives and boundary distortion. The proposed method ranked first in the OCT Layer Segmentation task of GOALS challenge held by MICCAI 2022. The source code is available at https://www.github.com/tyb311/TCCT.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2023.3317072DOI Listing

Publication Analysis

Top Keywords

layer segmentation
12
boundary regression
12
retinal layers
12
retinal layer
8
oct images
8
regression feature
8
feature polarization
8
false positives
8
loss function
8
proposed method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!