Self-Organization of Nonlinearly Coupled Neural Fluctuations Into Synergistic Population Codes.

Neural Comput

Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 200433, China.

Published: October 2023

Neural activity in the brain exhibits correlated fluctuations that may strongly influence the properties of neural population coding. However, how such correlated neural fluctuations may arise from the intrinsic neural circuit dynamics and subsequently affect the computational properties of neural population activity remains poorly understood. The main difficulty lies in resolving the nonlinear coupling between correlated fluctuations with the overall dynamics of the system. In this study, we investigate the emergence of synergistic neural population codes from the intrinsic dynamics of correlated neural fluctuations in a neural circuit model capturing realistic nonlinear noise coupling of spiking neurons. We show that a rich repertoire of spatial correlation patterns naturally emerges in a bump attractor network and further reveals the dynamical regime under which the interplay between differential and noise correlations leads to synergistic codes. Moreover, we find that negative correlations may induce stable bound states between two bumps, a phenomenon previously unobserved in firing rate models. These noise-induced effects of bump attractors lead to a number of computational advantages including enhanced working memory capacity and efficient spatiotemporal multiplexing and can account for a range of cognitive and behavioral phenomena related to working memory. This study offers a dynamical approach to investigating realistic correlated neural fluctuations and insights to their roles in cortical computations.

Download full-text PDF

Source
http://dx.doi.org/10.1162/neco_a_01612DOI Listing

Publication Analysis

Top Keywords

neural fluctuations
16
neural population
12
correlated neural
12
neural
10
population codes
8
correlated fluctuations
8
properties neural
8
neural circuit
8
working memory
8
fluctuations
6

Similar Publications

Insomnia is a common mental illness seriously affecting people lives, that might progress to major depression. However, the neural mechanism of patients with CID comorbid MDD remain unclear. Combining fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity (FC), this study investigated abnormality in local and long-range neural activity of patients with CID comorbid MDD.

View Article and Find Full Text PDF

Using space-filling curves and fractals to reveal spatial and temporal patterns in neuroimaging data.

J Neural Eng

January 2025

Center for Complex Systems and Brain Sciences, Universidad Nacional de San Martin Escuela de Ciencia Y Tecnologia, 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, ARGENTINA.

Objective Magnetic resonance imaging (MRI), functional MRI (fMRI) and other neuroimaging techniques are routinely used in medical diagnosis, cognitive neuroscience or recently in brain decoding. They produce three- or four-dimensional scans reflecting the geometry of brain tissue or activity, which is highly correlated temporally and spatially. While there exist numerous theoretically guided methods for analyzing correlations in one-dimensional data, they often cannot be readily generalized to the multidimensional geometrically embedded setting.

View Article and Find Full Text PDF

Multi-dimensional oscillatory activity of mouse GnRH neurons in vivo.

Elife

January 2025

Department of Physiology, Development and Neuroscience, Downing site, University of Cambridge, Cambridge, United Kingdom.

The gonadotropin-releasing hormone (GnRH) neurons represent the key output cells of the neural network controlling mammalian fertility. We used GCaMP fiber photometry to record the population activity of the GnRH neuron distal projections in the ventral arcuate nucleus where they merge before entering the median eminence to release GnRH into the portal vasculature. Recordings in freely behaving intact male and female mice revealed abrupt ~8 min duration increases in activity that correlated perfectly with the appearance of a subsequent pulse of luteinizing hormone (LH).

View Article and Find Full Text PDF

The fast and accurate quantitative detection of camellia oil products is significant for multiple reasons. In this study, rice bran oil and corn oil, whose Raman spectra both hold great similarities with camellia oil, are blended with camellia oil, and the concentration of each composition is predicted by models with varying feature extraction methods and regression algorithms. Back propagation neural network (BPNN), which has been rarely investigated in previous work, is used to construct regression models, the performances of which are compared with models using random forest (RF) and partial least squares regression (PLSR).

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the stress distribution in MEMS infrared light sources and develops an optimal thickness for supporting films to minimize stress and deformation.
  • By using advanced algorithms like the particle swarm algorithm and backpropagation neural networks, researchers enhance simulation data to better predict stress trends across various film thicknesses.
  • Comprehensive packaging solutions have been created to improve the thermal efficiency and stability of MEMS sensors in harsh conditions, ensuring their reliable operation compared to bare chips.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!