CRISPR/Cas9 gene editing system is recently developed robust genome editing technology for accelerating plant breeding. Various modifications of this editing system have been established for adaptability in plant varieties as well as for its improved efficiency and portability. This review provides an in-depth look at the various strategies for synthesizing gRNAs for efficient delivery in plant cells, including chemical synthesis and transcription. It also covers traditional analytical tools and emerging developments in detection methods to analyze CRISPR/Cas9 mediated mutation in plant breeding. Additionally, the review outlines the various analytical tools which are used to detect and analyze CRISPR/Cas9 mediated mutations, such as next-generation sequencing, restriction enzyme analysis, and southern blotting. Finally, the review discusses emerging detection methods, including digital PCR and qPCR. Hence, CRISPR/Cas9 has great potential for transforming agriculture and opening avenues for new advancements in the system for gene editing in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512805PMC
http://dx.doi.org/10.1080/21645698.2023.2256930DOI Listing

Publication Analysis

Top Keywords

plant breeding
12
gene editing
8
editing system
8
analytical tools
8
detection methods
8
analyze crispr/cas9
8
crispr/cas9 mediated
8
plant
5
crispr/cas9-gene editing
4
editing approaches
4

Similar Publications

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

Focusing on the Yashkun population of Gilgit-Baltistan, an administrative territory in northern Pakistan, our study investigated mtDNA haplotypes as indicators of ancient gene flow and genetic diversity. Genomic DNA was extracted and evaluated for quality using agarose gel electrophoresis. The complete control region of mtDNA (nt 16024-576) was amplified via PCR, and sequencing was performed using the Big Dye Terminator Kit on an Applied Biosystems Genetic Analyzer.

View Article and Find Full Text PDF

Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.

View Article and Find Full Text PDF

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!