Significance Statement: Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear. In this study, we demonstrated in a mouse model that erythrocyte ENT1-AMPD3 is a master energy regulator of the intracellular purinergic hypoxic compensatory response that promotes rapid energy supply from extracellular adenosine, eAMPK-dependent metabolic reprogramming, and O 2 delivery, which combat renal hypoxia and progression of CKD. ENT1-AMPD3-AMPK-BPGM comprise a group of circulating erythroid-specific biomarkers, providing early diagnostic and novel therapeutic targets for CKD.
Background: Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear.
Methods: Mice with an erythrocyte-specific deficiency in equilibrative nucleoside transporter 1 ( eEnt1-/- ) and a global deficiency in AMP deaminase 3 ( Ampd3-/- ) were generated to define their function in two independent CKD models, including angiotensin II (Ang II) infusion and unilateral ureteral obstruction (UUO). Unbiased metabolomics, isotopic adenosine flux, and various biochemical and cell culture analyses coupled with genetic studies were performed. Translational studies in patients with CKD and cultured human erythrocytes examined the role of ENT1 and AMPD3 in erythrocyte function and metabolism.
Results: eEnt1-/- mice display severe renal hypoxia, kidney damage, and fibrosis in both CKD models. The loss of eENT1-mediated adenosine uptake reduces intracellular AMP and thus abolishes the activation of AMPK α and bisphosphoglycerate mutase (BPGM). This results in reduced 2,3-bisphosphoglycerate and glutathione, leading to overwhelming oxidative stress in eEnt1-/- mice. Excess reactive oxygen species (ROS) activates AMPD3, resulting in metabolic reprogramming and reduced O 2 delivery, leading to severe renal hypoxia in eEnt1-/- mice. By contrast, genetic ablation of AMPD3 preserves the erythrocyte adenine nucleotide pool, inducing AMPK-BPGM activation, O 2 delivery, and antioxidative stress capacity, which protect against Ang II-induced renal hypoxia, damage, and CKD progression. Translational studies recapitulated the findings in mice.
Conclusion: eENT1-AMPD3, two highly enriched erythrocyte purinergic components that sense hypoxia, promote eAMPK-BPGM-dependent metabolic reprogramming, O 2 delivery, energy supply, and antioxidative stress capacity, which mitigates renal hypoxia and CKD progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561773 | PMC |
http://dx.doi.org/10.1681/ASN.0000000000000195 | DOI Listing |
Acta Pharmacol Sin
January 2025
Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
The ability of the mammalian kidney to repair or regenerate after acute kidney injury (AKI) is very limited. The maladaptive repair of AKI promotes progression to chronic kidney disease (CKD). Therefore, new strategies to promote the repair/regeneration of injured renal tubules after AKI are urgently needed.
View Article and Find Full Text PDFToxics
December 2024
Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China.
As one of the most common air pollutants, fine particulate matter (PM) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
MTA-SE Lendület "Momentum" Diabetes Research Group, 1083 Budapest, Hungary.
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with fluvoxamine (FLU) protects against acute kidney injury by inhibiting inflammation and ameliorating the effect of hypoxia.
View Article and Find Full Text PDFJ Clin Med
December 2024
Second Department of Internal Medicine, University of Toyama, Toyama 930-8555, Japan.
Hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitors have been developed as a treatment for renal anemia. However, their therapeutic impact on patients with concomitant heart failure remains uncertain. We investigated the impact of HIF-PH inhibitors on improving renal anemia and associated clinical outcomes in patients with heart failure.
View Article and Find Full Text PDFBiomedicines
December 2024
Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago 683-8504, Tottori, Japan.
Background/objectives: Renal anemia is one of the major complications associated with chronic kidney disease (CKD). Erythropoietin-stimulating agents (ESAs) are commonly used; however, some patients exhibit resistance. Hypoxia-inducible factor prolyl-hydroxylase inhibitors (HIF-PHIs) have emerged as a novel treatment for renal anemia, enhancing erythropoiesis and iron metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!