The integration of resistance training for cardiac patients leads to important health outcomes that are not optimally obtained with aerobic exercise; these include an increase in muscle mass, maintenance of bone mineral density, and improvements in muscular fitness parameters. Despite the proliferation of evidence supporting resistance exercise in recent decades, the implementation of resistance training is underutilised, and prescription is often sub-optimal in cardiac patients. This is frequently associated with safety concerns and inadequate methods of practical exercise prescription. This review discusses the potential application of cluster sets to prescribe interval resistance training in cardiac populations. The addition of planned, regular passive intra-set rest periods (cluster sets) in resistance training (i.e., interval resistance training) may be a practical solution for reducing the magnitude of haemodynamic responses observed with traditional resistance training. This interval resistance training approach may be a more suitable option for cardiac patients. Additionally, many cardiac patients present with impaired exercise tolerance; this model of interval resistance training may be a more suitable option to reduce fatigue, increase patient tolerance and enhance performance to these workloads. Practical strategies to implement interval resistance training for cardiac patients are also discussed. Preliminary evidence suggests that interval resistance training may lead to safer acute haemodynamic responses in cardiac patients. Future research is needed to determine the efficacy and feasibility of interval resistance training for health outcomes in this population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509118PMC
http://dx.doi.org/10.1186/s40798-023-00634-zDOI Listing

Publication Analysis

Top Keywords

resistance training
52
interval resistance
32
cardiac patients
28
resistance
14
training
13
cluster sets
12
training cardiac
12
sets prescribe
8
interval
8
prescribe interval
8

Similar Publications

Background: The emergence of 3D printing has revolutionized medical training and preoperative planning. However, existing models have limitations, prompting the development of newly designed flexible 3D-printed bone fracture models.

Methods: The designed flexible 3D-printed bone fracture models were evaluated by 133 trauma surgeons with different levels of experience for perceived value as educational tool or as preoperative planning tool.

View Article and Find Full Text PDF

Impairments on body function, activities of daily living (ADL) and cognition are common after stroke. Eccentric resistance training (ERT) may be implemented to improve them. The primary objectives were to evaluate whether ERT improves body function, ADL and cognition after stroke.

View Article and Find Full Text PDF

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.

View Article and Find Full Text PDF

Simulation-based education (SBE) has become an integral part of training in health professions education, offering a safe environment for learners to acquire and refine clinical skills. As a non-ionising imaging modality, ultrasound is a domain of health professions education that is particularly supported by SBE. Central to many simulation programs is the use of animal models, tissues, or body parts to replicate human anatomy and physiology.

View Article and Find Full Text PDF

A reduction-secretion system contributes to roxarsone (V) degradation and efflux in Brevundimonas sp. M20.

BMC Microbiol

January 2025

School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250117, China.

Roxarsone (V) (Rox(V)) is an organoarsenical compound that poses significant risks to aquatic ecosystems and various diseases. Reducing trivalent 3-amino-4-hydroxyphenylarsonic acid (HAPA(III)) offers a competitive advantage; however, it leads to localized arsenic contamination, which can disrupt the soil microbiome and impede plant growth. Three genes, BsntrA, arsC2, and BsexpA, encoding nitroreductase, arsenate reductase, and MFS transporter, respectively, were identified in the Rox(V)-resistant strain Brevundimonas sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!