Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Early stages of hepatitis B virus (HBV) infection usually involve inflammation of the liver. Patients with chronic infection have an increased risk of progressive liver fibrosis, cirrhosis, and life-threatening clinical complications of end-stage hepatocellular carcinoma (HCC).
Content: Early diagnosis of hepatic fibrosis and timely clinical management are critical to controlling disease progression and decreasing the burden of end-stage liver cancer. Fibrosis staging, through its current gold standard, liver biopsy, improves patient outcomes, but the clinical procedure is invasive with unpleasant post-procedural complications. Routine blood test markers offer promising diagnostic potential for early detection of liver disease without biopsy. There is a plethora of candidate routine blood test markers that have gone through phases of biomarker validation and have shown great promise, but their current limitations include a predictive ability that is limited to only a few stages of fibrosis. However, the advent of machine learning, notably pattern recognition, presents an opportunity to refine blood-based non-invasive models of hepatic fibrosis in the future.
Summary: In this review, we highlight the current landscape of routine blood-based non-invasive models of hepatic fibrosis, and appraise the potential application of machine learning (pattern recognition) algorithms to refining these models and optimising clinical predictions of HBV-associated liver disease.
Outlook: Machine learning via pattern recognition algorithms takes data analytics to a new realm, and offers the opportunity for enhanced multi-marker fibrosis stage prediction using pathology profile that leverages information across patient routine blood tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/dx-2023-0078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!