A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of the prediction model for mortality in patients with diabetic kidney disease in intensive care unit: a study based on medical information Mart for intensive care. | LitMetric

We aimed to explore factors associated with mortality of diabetic kidney disease (DKD), and to establish a prediction model for predicting the mortality of DKD. This was a cohort study. In total, 1,357 DKD patients were identified from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, with 505 DKD patients being identified from the MIMIC-III as the testing set. The outcome of the study was 1-year mortality. COX proportional hazard models were applied to screen the predictive factors. The prediction model was conducted based on the predictive factors. A receiver operating characteristic (ROC) curve with the area under the curve (AUC) was calculated to evaluate the performance of the prediction model. The median follow-up time was 365.00 (54.50,365.00) days, and 586 patients (43.18%) died within 1 year. The predictive factors for 1-year mortality in DKD included age, weight, sepsis, heart rate, temperature, Charlson Comorbidity Index (CCI), Simplified Acute Physiology Score (SAPS) II, and Sequential Organ Failure Assessment (SOFA), lymphocytes, red cell distribution width (RDW), serum albumin, and metformin. The AUC of the prediction model for predicting 1-year mortality in the training set was 0.771 [95% confidence interval (CI): 0.746-0.795] and the AUC of the prediction model in the testing set was 0.795 (95% CI: 0.756-0.834). This study establishes a prediction model for predicting mortality of DKD, providing a basis for clinical intervention and decision-making in time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512753PMC
http://dx.doi.org/10.1080/0886022X.2023.2257808DOI Listing

Publication Analysis

Top Keywords

prediction model
28
intensive care
12
model predicting
12
mortality dkd
12
1-year mortality
12
predictive factors
12
diabetic kidney
8
kidney disease
8
medical mart
8
mart intensive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!