A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

XGBoost odor prediction model: finding the structure-odor relationship of odorant molecules using the extreme gradient boosting algorithm. | LitMetric

AI Article Synopsis

  • The study tackles the complex relationship between molecular structure and odor perception, highlighting challenges due to vague odor descriptors.
  • Recent advancements in machine learning (ML), particularly with the XGBoost model, have enabled more accurate predictions of odors from molecular structures.
  • The developed model achieved over 99% precision and sensitivity in predicting seven basic smells, outperforming other recent models and offering insights into the structure-odor relationship.

Article Abstract

Determining the structure-odor relationship has always been a very challenging task. The main challenge in investigating the correlation between the molecular structure and its associated odor is the ambiguous and obscure nature of verbally defined odor descriptors, particularly when the odorant molecules are from different sources. With the recent developments in machine learning (ML) technology, ML and data analytic techniques are significantly being used for quantitative structure-activity relationship (QSAR) in the chemistry domain toward knowledge discovery where the traditional Edisonian methods have not been useful. The smell perception of odorant molecules is one of the aforementioned tasks, as olfaction is one of the least understood senses as compared to other senses. In this study, the XGBoost odor prediction model was generated to classify smells of odorant molecules from their SMILES strings. We first collected the dataset of 1278 odorant molecules with seven basic odor descriptors, and then 1875 physicochemical properties of odorant molecules were calculated. To obtain relevant physicochemical features, a feature reduction algorithm called PCA was also employed. The ML model developed in this study was able to predict all seven basic smells with high precision (>99%) and high sensitivity (>99%) when tested on an independent test dataset. The results of the proposed study were also compared with three recently conducted studies. The results indicate that the XGBoost-PCA model performed better than the other models for predicting common odor descriptors. The methodology and ML model developed in this study may be helpful in understanding the structure-odor relationship.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2258415DOI Listing

Publication Analysis

Top Keywords

odorant molecules
24
odor descriptors
12
xgboost odor
8
odor prediction
8
prediction model
8
structure-odor relationship
8
model developed
8
developed study
8
odorant
6
molecules
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!