Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a comparison between various algorithms of inference of covariance and precision matrices in small data sets of real vectors of the typical length and dimension of human brain activity time series retrieved by functional magnetic resonance imaging (fMRI). Assuming a Gaussian model underlying the neural activity, the problem consists of denoising the empirically observed matrices to obtain a better estimator of the (unknown) true precision and covariance matrices. We consider several standard noise-cleaning algorithms and compare them on two types of data sets. The first type consists of synthetic time series sampled from a generative Gaussian model of which we can vary the fraction of dimensions per sample q and the strength of off-diagonal correlations. The second type consists of time series of fMRI brain activity of human subjects at rest. The reliability of each algorithm is assessed in terms of test-set likelihood and, in the case of synthetic data, of the distance from the true precision matrix. We observe that the so-called optimal rotationally invariant estimator, based on random matrix theory, leads to a significantly lower distance from the true precision matrix in synthetic data and higher test likelihood in natural fMRI data. We propose a variant of the optimal rotationally invariant estimator in which one of its parameters is optimzed by cross-validation. In the severe undersampling regime (large q) typical of fMRI series, it outperforms all the other estimators. We furthermore propose a simple algorithm based on an iterative likelihood gradient ascent, leading to very accurate estimations in weakly correlated synthetic data sets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.024313 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!