Comparison of round and knife-edge-like cathodes on gas-puff implosions.

Phys Rev E

Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile.

Published: August 2023

Preionization is believed to play an important role on the implosion of gas-puff Z pinches. Some experiments have used an external preionization source, e.g., UV light or electron beam. In contrast, other experiments rely completely on over voltage breakdown by the own generator's voltage pulse. However, this approach lacks shot-to-shot reproducibility since self-breakdown is mainly a stochastic process. In this work, we performed a systematic study on self-breakdown using two different cathode geometries: (i) a smooth, round cathode to provide a homogeneous electric field, (ii) a sharp, knife-edge-like geometry to enhance the electric field locally and eventually electron emission. The experiments were carried out on the Llampudken current generator, which provides a current pulse of ∼400kA amplitude and 200 ns rise time (10%-90%). We implemented gated XUV imaging, filtered diodes and time-integrated x-ray imaging to obtain information about the implosion as well as the stagnation phase for the two cathode geometries. We found that erosion of the knife-edge cathode might be a serious problem, and we had to replace it every 15 shots. On the other hand, the round cathode lasted for the whole series of experiments. We also measured a more reproducible and larger peak current for the knife cathode. From the photo-conductive detectors we observed that even if the round cathode might present shots with higher x-ray yield compared to the knife cathode, dispersion is almost twice as large. Moreover, after a statistic analysis, it is demonstrated that the dispersion in the yield is due solely to differences imposed by the cathodes and not to variations in the driver, as no correlation was found between them. We found that in order to fit the experimental data with the snowplow model, only ∼60% of the total mass is compressed in the knife cathode while ∼20% for the round one, highlighting the importance of the cathode and preionization. Therefore, we conclude that the use of the knife cathode increases the reproducibility of the experiment in comparison with the round cathode.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.025202DOI Listing

Publication Analysis

Top Keywords

round cathode
16
knife cathode
16
cathode
12
comparison round
8
cathode geometries
8
electric field
8
round
5
round knife-edge-like
4
knife-edge-like cathodes
4
cathodes gas-puff
4

Similar Publications

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.

Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined cochlear implant array malpositioning, particularly focusing on a specific issue called tip fold-over, which can impair speech perception and cause other complications.
  • Researchers conducted experiments using cadaveric human heads to measure intracochlear pressure and observe the mechanics of tip fold-over events during the insertion of electrodes.
  • Three distinct types of tip fold-overs were identified, with significant pressure changes linked to electrode twisting; this recognition could improve surgical techniques and monitoring during cochlear implant procedures.
View Article and Find Full Text PDF

Aqueous alkaline Zn-air batteries (ZABs) have garnered widespread attention due to their high energy density and safety, however, the poor electrochemical reversibility of Zn and low battery round-trip efficiency strongly limit their further development. The manipulation of an intricate microscopic balance among anode/electrolyte/cathode, to enhance the performance of ZABs, critically relies on the formula of electrolytes. Herein, the Bayesian optimization approach is employed to achieve the effective design of optimal compositions of multicomponent electrolytes, resulting in the remarkable enhancement of ZAB performance.

View Article and Find Full Text PDF

Round Window Accessibility Prediction in Cochlear Implant Surgery.

J Int Adv Otol

November 2024

Department of ENT Head and Neck Surgery, Faculty of Medicine and Pharmacy of Marrakech, Cadi Ayyad University, University Hospital Center Mohammed VI, Marrakech, Morocco.

Background: Clear identification of the round window (RW) through the facial recess is a key surgical step for successful cochlear implantation (CI) surgery, which may be very challenging in some cases. Objective is to predict round window (RW) accessibility during CI surgery using high-resolution computed tomography (HRCT).

Methods: We retrospectively reviewed preoperative HRCT scans of 142 patients who underwent CI surgery via the standard posterior tympanotomy approach at our ENT Head and Neck Surgery department.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!