Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pressurized fluid injection into underground rocks occurs in applications like carbon sequestration, hydraulic fracturing, and wastewater disposal and may lead to human-induced earthquakes and surface uplift. The fluid injection raises the pore pressure within the porous rocks, while deforming them, yet this coupling is rarely captured by experiments. Moreover, experimental studies of rocks are usually limited to postmortem inspection and cannot capture the complete deformation process in time and space. In this Letter we will present a unique experimental system that can capture the spatial distribution of poromechanical effects in real time by using an artificial rocklike transparent medium mimicking the deformation of sandstone. We will demonstrate the system abilities through a fluid injection experiment, showing the nonuniform poroelastic expansion of the medium and the corresponding poroelastic model that captures completely the results without any fitting parameters. Moreover, our results demonstrate and validate the underlying assumptions of the poroelastic theory for fluid injection in rocklike materials, which are relevant for understanding human-induced earthquakes and injection induced surface uplift.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.L022901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!