In recent work [Rodrigues et al., Phys. Rev. E 100, 022121 (2019)10.1103/PhysRevE.100.022121], evidence was found that the surface adsorption transition of interacting self-avoiding trails (ISATs) placed on the square lattice displays a nonuniversal behavior at the special adsorption point (SAP) where the collapsing polymers adsorb. In fact, different surface exponents ϕ^{(s)} and 1/δ^{(s)} were found at the SAP depending on whether the surface orientation is horizontal (HS) or diagonal (DS). Here, we revisit these systems and study other ones, through extensive Monte Carlo simulations, considering much longer trails than previous works. Importantly, we demonstrate that the different exponents observed in the reference above are due to the presence of a surface-attached-globule (SAG) phase in the DS system, which changes the multicritical nature of the SAP and is absent in the HS case. By considering a modified horizontal surface (mHS), on which the trails are forbidden from having two consecutive steps, resembling the DS situation, a stable SAG phase is found in the phase diagram, and both DS and mHS systems present similar 1/δ^{(s)} exponents at the SAP, namely, 1/δ^{(s)}≈0.44, whereas 1/δ^{(s)}≈0.34 in the HS case. Intriguingly, while ϕ^{(s)}≈1/δ^{(s)} is found for the DS and HS scenarios, as expected, in the mHS case ϕ^{(s)} is about 10% smaller than 1/δ^{(s)}. These results strongly indicate that at least two universality classes exist for the SAPs of adsorbing ISATs on the square lattice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.024146 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!