We study the (1+1) focusing nonlinear Schrödinger equation for an initial condition with compactly supported parabolic profile and phase depending quadratically on the spatial coordinate. In the absence of dispersion, using the natural class of self-similar solutions, we provide a criterion for blowup in finite time, generalizing a result by Talanov et al. In the presence of dispersion, we numerically show that the same criterion determines, even beyond the semiclassical regime, whether the solution relaxes or develops a high-order rogue wave, whose onset time is predicted by the corresponding dispersionless catastrophe time. The sign of the chirp appears to determine the prevailing scenario among two competing mechanisms for rogue wave formation. For negative values, the numerical simulations are suggestive of the dispersive regularization of a gradient catastrophe described by Bertola and Tovbis for a different class of smooth, bell-shaped initial data. As the chirp becomes positive, the rogue wave seems to result from the interaction of counterpropagating dispersive dam break flows, as in the box problem recently studied by El, Khamis, and Tovbis. As the chirp and amplitude of the initial profile are relatively easy to manipulate in optical devices and water tank wave generators, we expect our observation to be relevant for experiments in nonlinear optics and fluid dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.024213 | DOI Listing |
PLoS Comput Biol
December 2024
Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America.
Transcranial magnetic stimulation (TMS) is a non-invasive, FDA-cleared treatment for neuropsychiatric disorders with broad potential for new applications, but the neural circuits that are engaged during TMS are still poorly understood. Recordings of neural activity from the corticospinal tract provide a direct readout of the response of motor cortex to TMS, and therefore a new opportunity to model neural circuit dynamics. The study goal was to use epidural recordings from the cervical spine of human subjects to develop a computational model of a motor cortical macrocolumn through which the mechanisms underlying the response to TMS, including direct and indirect waves, could be investigated.
View Article and Find Full Text PDFChaos
November 2024
School of Automation and Software Engineering, Shanxi University, Taiyuan 030013, China.
In this paper, we investigate the new generalized stochastic fractional potential-Korteweg-de Vries equation, which describes nonlinear optical solitons and photon propagation in circuits and multicomponent plasmas. Inspired by Kolmogorov-Arnold network and our earlier work, we enhance the improved bilinear neural network method by using a large number of activation functions instead of neurons. This method incorporates the concept of simulating more complicated activation functions with fewer parameters, with more diverse activation functions to generate more complex and rare analytical solutions.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Physics, College of Khurma University College, Taif University, Taif, 21944, Saudi Arabia.
Chaos
October 2024
KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
Chaos
October 2024
Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!