Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the stationary states of an overdamped active Brownian particle (ABP) in a harmonic trap in two dimensions via mathematical calculations and numerical simulations. In addition to translational diffusion, the ABP self-propels with a certain velocity, whose magnitude is constant, but its direction is subject to Brownian rotation. In the limit where translational diffusion is negligible, the stationary distribution of the particle's position shows a transition between two different shapes, one with maximum and the other with minimum density at the center, as the trap stiffness is increased. We show that this nonintuitive behavior is captured by the relevant Fokker-Planck equation, which, under minimal assumptions, predicts a continuous phase transition-like change between the two different shapes. As the translational diffusion coefficient is increased, both these distributions converge into the equilibrium, Boltzmann form. Our simulations support the analytical predictions and also show that the probability distribution of the orientation angle of the self-propulsion velocity undergoes a transition from unimodal to bimodal forms in this limit. We also extend our simulations to a three-dimensional trap and find similar behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.024121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!