Logical and thermodynamical reversibility: Optimized experimental implementation of the not operation.

Phys Rev E

Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

Published: August 2023

The not operation is a reversible transformation acting on a 1-bit logical state and should be achievable in a physically reversible manner at no energetic cost. We experimentally demonstrate a bit-flip protocol based on the momentum of an underdamped oscillator confined in a double-well potential. The protocol is designed to be reversible in the ideal dissipationless case, and the thermodynamic work required is inversely proportional to the quality factor of the system. Our implementation demonstrates an energy dissipation significantly lower than the minimal cost of information processing in logically irreversible operations. It is, moreover, performed at high speed: A fully equilibrated final state is reached in only half a period of the oscillator. The results are supported by an analytical model that takes into account the presence of irreversibility. This Research Letter concludes with a discussion of optimization strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.L022101DOI Listing

Publication Analysis

Top Keywords

logical thermodynamical
4
thermodynamical reversibility
4
reversibility optimized
4
optimized experimental
4
experimental implementation
4
implementation operation
4
operation operation
4
operation reversible
4
reversible transformation
4
transformation acting
4

Similar Publications

Quantum memory at nonzero temperature in a thermodynamically trivial system.

Nat Commun

January 2025

Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA.

Passive error correction protects logical information forever (in the thermodynamic limit) by updating the system based only on local information and few-body interactions. A paradigmatic example is the classical two-dimensional Ising model: a Metropolis-style Gibbs sampler retains the sign of the initial magnetization (a logical bit) for thermodynamically long times in the low-temperature phase. Known models of passive quantum error correction similarly exhibit thermodynamic phase transitions to a low-temperature phase wherein logical qubits are protected by thermally stable topological order.

View Article and Find Full Text PDF

Soil temperature estimation at different depths using machine learning paradigms based on meteorological data.

Environ Monit Assess

December 2024

Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nadu, India.

Knowledge of soil temperature (ST) is important for analysing environmental conditions and climate change. Moreover, ST is a vital element of soil that impacts crop growth as well as the germination of the seeds. In this study, four machine-learning (ML) paradigms including random forest (RF), radial basis neural network (RBNN), multi-layer perceptron neural network (MLPNN), and co-active neuro-fuzzy inference system (CANFIS) were used for estimation of daily ST at different soil depths (i.

View Article and Find Full Text PDF

Navigating the transitional window for organic semiconductor single crystals towards practical integration: from materials, crystallization, and technologies to real-world applications.

Chem Soc Rev

December 2024

Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.

Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how amplitude transformation can improve the effectiveness of Multiscale Fuzzy Entropy for detecting Alzheimer's disease using EEG signals.
  • Amplitude transformation helps address issues with variations in signal amplitude and parameter selection that lead to inconsistent outcomes.
  • Results show that using amplitude transformation significantly enhances detection accuracy, with an average of 73.2% success rate, compared to only one raw data combination surpassing 65%.
View Article and Find Full Text PDF

The low-energy subspace of a conformal field theory (CFT) can serve as a quantum error correcting code, with important consequences in holography and quantum gravity. We consider generic (1+1)D CFT codes under extensive local dephasing channels and analyze their error correctability in the thermodynamic limit. We show that (i) there is a finite decoding threshold if and only if the minimal nonzero scaling dimension in the fusion algebra generated by the jump operator of the channel is larger than 1/2 and (ii) the number of protected logical qubits k≥Ω(loglogn), where n is the number of physical qubits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!