A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvpe4ad91osi6hu0bb6fvo1h6uvd5quk2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of poly (lactic-co-glycolic acid) polymer nanoparticles loaded with vancomycin against Staphylococcus aureus biofilm. | LitMetric

AI Article Synopsis

  • Staphylococcus aureus poses a significant threat in healthcare due to its ability to form biofilms and resist both the immune system and various antimicrobials.
  • This study focused on developing poly (lactic-co-glycolic acid) nanoparticles loaded with vancomycin and lysostaphin to inhibit S. aureus biofilm formation, analyzing their physicochemical properties and effectiveness against different S. aureus strains.
  • Results indicated that while the nano drug carrier did not show significant differences from free vancomycin in standard tests, it demonstrated a stronger ability to prevent biofilm formation, suggesting potential benefits for treating staphylococcal infections in hospitals.

Article Abstract

Staphylococcus aureus is a unique challenge for the healthcare system because it can form biofilms, is resistant to the host's immune system, and is resistant to numerous antimicrobial therapies. The aim of this study was to investigate the effect of poly (lactic-co-glycolic acid) (PLGA) polymer nanoparticles loaded with vancomycin and conjugated with lysostaphin (PLGA-VAN-LYS) on inhibiting S. aureus biofilm formation. Nano drug carriers were produced using the double emulsion evaporation process. we examined the physicochemical characteristics of the nanoparticles, including particle size, polydispersity index (PDI), zeta potential, drug loading (DL), entrapment efficiency (EE), Lysostaphin conjugation efficiency (LCE), and shape. The effect of the nano drug carriers on S. aureus strains was evaluated by determining the minimum inhibitory concentration (MIC), conducting biofilm formation inhibition studies, and performing agar well diffusion tests. The average size, PDI, zeta potential, DL, EE, and LCE of PLGA-VAN-LYS were 320.5 ± 35 nm, 0.270 ± 0.012, -19.5 ± 1.3 mV, 16.75 ± 2.5%, 94.62 ± 2.6%, and 37% respectively. Both the agar well diffusion and MIC tests did not show a distinction between vancomycin and the nano drug carriers after 72 h. However, the results of the biofilm analysis demonstrated that the nano drug carrier had a stronger inhibitory effect on biofilm formation compared to the free drug. The use of this technology for treating hospital infections caused by the Staphylococcus bacteria may have favorable effects on staphylococcal infections, considering the efficacy of the nano medicine carrier developed in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506343PMC
http://dx.doi.org/10.1186/s12896-023-00811-8DOI Listing

Publication Analysis

Top Keywords

nano drug
16
biofilm formation
12
drug carriers
12
poly lactic-co-glycolic
8
lactic-co-glycolic acid
8
polymer nanoparticles
8
nanoparticles loaded
8
loaded vancomycin
8
staphylococcus aureus
8
aureus biofilm
8

Similar Publications

Anthracycline doxorubicin (DOX) remains the first-line chemotherapeutic drug for the efficient treatment of breast cancer, but its severe cardiotoxicity limits its long-term application in clinical tumor chemotherapy. Until now, the pathogenesis mechanism of DOX-induced cardiotoxicity (DIC) is still not fully understood. According to current studies, the oxidative stress caused by the imbalance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and mitochondrial dysfunction in myocardial cells are closely related to DIC.

View Article and Find Full Text PDF

Exosome-derived proteins in gastric cancer progression, drug resistance, and immune response.

Cell Mol Biol Lett

December 2024

Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.

Gastric cancer (GC) represents a prevalent malignancy globally, often diagnosed at advanced stages owing to subtle early symptoms, resulting in a poor prognosis. Exosomes are extracellular nano-sized vesicles and are secreted by various cells. Mounting evidence indicates that exosomes contain a wide range of molecules, such as DNA, RNA, lipids, and proteins, and play crucial roles in multiple cancers including GC.

View Article and Find Full Text PDF

Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis.

J Nanobiotechnology

December 2024

Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain.

Background: Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis.

View Article and Find Full Text PDF

Introduction: Breast cancer, a formidable global health challenge for women, necessitates innovative therapeutic strategies with enhanced efficacy and minimal side effects. Aripiprazole (ARI), a widely used schizophrenia medication, exhibits promising potential in the treatment of breast cancer. As cancer therapy evolves towards a combination approach, multimodal nano-based delivery systems, such as ARI-loaded niosomes (NIOs) combined with Chitosan-Au nanoparticles for chemo-photothermal therapy, show promise over traditional chemotherapy alone by enhancing targeted efficacy and minimizing side effects.

View Article and Find Full Text PDF

Cellular mechanical dysregulation can lead to diseases and conditions like tumorigenesis. Drug delivery systems that recognize and respond to specific cellular mechanical characteristics are potentially useful for targeted therapy. We report here the creation of a DNA mechanical nanovehicle that is responsive to cell surface receptor-mediated tensile forces, which can then correspondingly deliver an anticancer drug in situ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!