Uniparental inheritance of mitochondrial DNA (mtDNA) is an evolutionary trait found in nearly all eukaryotes. In many species, including humans, the sperm mitochondria are introduced to the oocyte during fertilization. The mechanisms hypothesized to prevent paternal mtDNA transmission include ubiquitination of the sperm mitochondria and mitophagy. However, the causative mechanisms of paternal mtDNA elimination have not been defined. We found that mitochondria in human spermatozoa are devoid of intact mtDNA and lack mitochondrial transcription factor A (TFAM)-the major nucleoid protein required to protect, maintain and transcribe mtDNA. During spermatogenesis, sperm cells express an isoform of TFAM, which retains the mitochondrial presequence, ordinarily removed upon mitochondrial import. Phosphorylation of this presequence prevents mitochondrial import and directs TFAM to the spermatozoon nucleus. TFAM relocalization from the mitochondria of spermatogonia to the spermatozoa nucleus directly correlates with the elimination of mtDNA, thereby explaining maternal inheritance in this species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763495 | PMC |
http://dx.doi.org/10.1038/s41588-023-01505-9 | DOI Listing |
The impact of diet-induced maternal obesity on offspring airway hyperresponsiveness was studied in a diversity outbred mouse model that mirrors human genetic diversity. Female mice were started on high-fat or regular diet 8 weeks before breeding and throughout pregnancy and lactation. After weaning, all offspring were fed a regular diet.
View Article and Find Full Text PDFCase Rep Obstet Gynecol
December 2024
Department of Obstetrics and Gynecology, Jimma University School of Medicine, Jimma, Ethiopia.
Fetal limb anomaly presentation varies greatly. It can present as amelia (complete absence of skeletal part of one or more limb), meromelia (partial absence of skeletal part of one or more limb), phocomelia (only rudimentary limb formed), and minor limb disorders like polydactyly. The complete absence of the four fetal limbs is extremely rare.
View Article and Find Full Text PDFNat Commun
January 2025
Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.
View Article and Find Full Text PDFBull Entomol Res
January 2025
Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China.
Significant differences in life-history traits between the southern population (S) and northern (N) population of the cabbage beetle make it an excellent model for studying inheritance in this insect. In the present study, we observed the life-history traits of pure strains, F, reciprocal backcross and reciprocal F progeny under a photoperiod of L:D 15:9 h at 22 °C. The S population had shorter larval development time, longer pupal time, higher body weight, growth rate and weight loss compared with the N population.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.
Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!