Nitrogen (N) is essential for plant growth and development. Therefore, understanding its utilization is essential for improving crop productivity. However, much remains to be learned about plant N sensing and signaling. Here, rice (Oryza sativa) NUCLEAR FACTOR-YA5 (OsNF-YA5) expression was tightly regulated by N status and induced under N-deficient conditions. Overexpression (OE) of OsNF-YA5 in rice resulted in increased chlorophyll levels and delayed senescence compared to control plants under normal N conditions. Agronomic traits were significantly improved in OE plants and impaired in knockout mutants under N-deficient conditions. Using a dexamethasone-inducible system, we identified the putative targets of OsNF-YA5 that include amino acid, nitrate/peptide transporters, and NITRATE TRANSPORTER 1.1A (OsNRT1.1A), which functions as a key transporter in rice. OsNF-YA5 directly enhanced OsNRT1.1A expression and N uptake rate under N-deficient conditions. Besides, overexpression of OsNF-YA5 also enhanced the expression of GLUTAMINE SYNTHETASE 1/2 (GS1/2) and GLUTAMINE OXOGLUTARATE AMINOTRANSFERASE 1/2 (GOGAT1/2), increasing free amino acid contents under N-deficient conditions. Osa-miR169a expression showed an opposite pattern with OsNF-YA5 depending on N status. Further analysis revealed that osa-miR169a negatively regulates OsNF-YA5 expression and N utilization, demonstrating that an OsNF-YA5/osa-miR169a module tightly regulates rice N utilization for adaptation to N status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756765 | PMC |
http://dx.doi.org/10.1093/plphys/kiad504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!