Adversarial attacks and defenses using feature-space stochasticity.

Neural Netw

Department of Physiology, The University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), 7-3-1, Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan; Institute for AI and Beyond, 7-3-1, Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan. Electronic address:

Published: October 2023

Recent studies in deep neural networks have shown that injecting random noise in the input layer of the networks contributes towards ℓ-norm-bounded adversarial perturbations. However, to defend against unrestricted adversarial examples, most of which are not ℓ-norm-bounded in the input layer, such input-layer random noise may not be sufficient. In the first part of this study, we generated a novel class of unrestricted adversarial examples termed feature-space adversarial examples. These examples are far from the original data in the input space but adjacent to the original data in a hidden-layer feature space and far again in the output layer. In the second part of this study, we empirically showed that while injecting random noise in the input layer was unable to defend these feature-space adversarial examples, they were defended by injecting random noise in the hidden layer. These results highlight the novel benefit of stochasticity in higher layers, in that it is useful for defending against these feature-space adversarial examples, a class of unrestricted adversarial examples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.08.022DOI Listing

Publication Analysis

Top Keywords

adversarial examples
24
random noise
16
injecting random
12
input layer
12
unrestricted adversarial
12
feature-space adversarial
12
adversarial
8
noise input
8
class unrestricted
8
original data
8

Similar Publications

MITIGATING OVER-SATURATED FLUORESCENCE IMAGES THROUGH A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK.

Proc IEEE Int Symp Biomed Imaging

May 2024

Department of Electrical and Computer Engineering, Nashville, TN, USA.

Multiplex immunofluorescence (MxIF) imaging is a critical tool in biomedical research, offering detailed insights into cell composition and spatial context. As an example, DAPI staining identifies cell nuclei, while CD20 staining helps segment cell membranes in MxIF. However, a persistent challenge in MxIF is saturation artifacts, which hinder single-cell level analysis in areas with over-saturated pixels.

View Article and Find Full Text PDF

Deep learning enabled rapid classification of yeast species in food by imaging of yeast microcolonies.

Food Res Int

February 2025

Department of Food Science & Technology, University of California-Davis, Davis, CA 95616, USA; Department of Biological & Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA. Electronic address:

Diverse species of yeasts are commonly associated with food and food production environments. The contamination of food products by spoilage yeasts poses significant challenges, leading to quality degradation and food loss. Similarly, the introduction of undesirable strains during fermentation can cause considerable challenges with the quality and progress of the fermentation process.

View Article and Find Full Text PDF

Adversarial attacks were commonly considered in computer vision (CV), but their effect on network security apps rests in the field of open investigation. As IoT, AI, and 5G endure to unite and understand the potential of Industry 4.0, security events and incidents on IoT systems have been enlarged.

View Article and Find Full Text PDF

This dataset is generated from real-time simulations conducted in MATLAB/Simscape, focusing on the impact of smart noise signals on battery energy storage systems (BESS). Using Deep Reinforcement Learning (DRL) agent known as Proximal Policy Optimization (PPO), noise signals in the form of subtle millivolt and milliampere variations are strategically created to represent realistic cases of False Data Injection Attacks (FDIA). These signals are designed to disrupt the State of Charge (SoC) and State of Health (SoH) estimation blocks within Unscented Kalman Filters (UKF).

View Article and Find Full Text PDF

Large visual language models like Contrastive Language-Image Pre-training (CLIP), despite their excellent performance, are highly vulnerable to the influence of adversarial examples. This work investigates the accuracy and robustness of visual language models (VLMs) from a novel multi-modal perspective. We propose a multi-modal fine-tuning method called Multi-modal Depth Adversarial Prompt Tuning (MDAPT), which guides the generation of visual prompts through text prompts to improve the accuracy and performance of visual language models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!