A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure-based biological investigations on ruthenium complexes containing 2,2'-bipyridine ligands and their applications in photodynamic therapy as a potential photosensitizer. | LitMetric

Structure-based biological investigations on ruthenium complexes containing 2,2'-bipyridine ligands and their applications in photodynamic therapy as a potential photosensitizer.

Chem Biol Drug Des

Department of Studies and Research in Physics, Department of Biochemistry, Adichunchanagiri School of Natural Sciences, Centre for Research and Innovation, Adichunchanagiri University, Karnataka, BG Nagara, India.

Published: December 2023

Ruthenium complexes have been investigated for various biological applications by virtue of their radical scavenging, DNA binding, receptor binding, and cytotoxic abilities; especially the possible potential application of these complexes in photodynamic therapy (PDT). This study focuses on the synthesis, structural characterization and biological application (pertaining to its cytotoxicity and radical generation) of ruthenium complexed with salicylaldehyde fumaryl-dihydrazone (slfhH ), salicylaldehyde glutaryl-di-hydrazone (slfgH ) and 2,2'-bipyridine (bpy). During the synthesis, the anticipated complex was precipitated out but as serendipity, Ruthenium(II) tris (2,2'-bipyridyl) monochloride nonahydrate {[Ru(bpy) ] .Cl.9H O} (RBMN) and Ruthenium(II) tris (2,2'-bipyridyl) monochloride septahydrate {[Ru(bpy) ] .Cl.7H O}(RBMS) were crystallized from the filtrate. The crystal structure of complexes RBMN and RBMS were determined by a single-crystal X-ray diffraction methods and it showed that chlorine anion lies at the crystallographic axis and forms a halogen hydrogen-bonded organic framework (XHOF) to provide the stability. In comparison with similar structures in Cambridge Crystallographic Data Center (CCDC) revealed that the nature of the XHOF framework and the layered packing are conserved. The compounds showed excellent cytotoxic ability (against L6 cells) and the nitro blue tetrazolium (NBT) assay upon irradiation to light revealed its ability to produce reactive oxygen species (ROS). The presence of partially occupied water molecules in the layered organization within the crystal packing mimics the release of ROS resulting in cytotoxicity. The structural results together with the biological data make these complexes interesting candidates for potential photosensitizers for PDT applications.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.14341DOI Listing

Publication Analysis

Top Keywords

ruthenium complexes
8
photodynamic therapy
8
rutheniumii tris
8
tris 22'-bipyridyl
8
22'-bipyridyl monochloride
8
complexes
5
structure-based biological
4
biological investigations
4
investigations ruthenium
4
complexes 22'-bipyridine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!