Preparation of Non-Spherical Janus Particles via an Orthogonal Dissolution Approach.

Macromol Rapid Commun

Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland.

Published: November 2023

Post-synthesis modifications are valuable tools to alter functionalities and induce morphology changes in colloidal particles. Non-spherical polymer particles with Janus characteristics are prepared by combining seeded growth polymerization and selective dissolution. First, spherical polystyrene (PS) particles have been swollen with methyl methacrylate (MMA) with an activated swelling method. This is followed by polymerization that led to particles with two well-separated faces: one made of PS and the second of polymethyl methacrylate (PMMA). Subsequently, non-spherical particles are obtained by exposing the Janus colloids to various solvents. Using the two polymers' orthogonal solubility, solvents are identified to selectively dissolve only one face, leading to hemispherical PS or PMMA particles. It is further investigated how changing the composition of the PMMA face - by either co-polymerization with glycidyl methacrylate or by adding a cross-linker - affects the particles' morphology. The poly-methacrylate face can gain total or partial resistance towards the solvents, resulting in intriguing shapes, such as mushroom-like and Janus dimpled particles. The dissolution mechanisms are investigated via optical microscopy, where total or partial dissolutions can be directly observed. Lastly, prematurely quenching the dissolution of the particle's lobes with water can be used to control the Janus mushroom-like particle aspect ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202300415DOI Listing

Publication Analysis

Top Keywords

particles
8
total partial
8
janus
5
preparation non-spherical
4
non-spherical janus
4
janus particles
4
particles orthogonal
4
dissolution
4
orthogonal dissolution
4
dissolution approach
4

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Preserving brain health by minimizing microplastic output from resin histology.

J Histotechnol

January 2025

Mechanical Engineering, Orthopedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA.

With an increasing concentration of microplastics (MPs) in every biome, laboratories with a focus on creating histology slides from resin-embedded specimens could be partially responsible for expanding the emission of microscopic resinous particles into the environment. With current research elucidating harmful health impacts from MPs, releasing them incautiously is arguably unethical and, in the near future, plausibly illegal. The Orthopedic Bioengineering Research Laboratory (OBRL) is in Colorado, a state known not only for its natural beauty but also for its increasing number of legislative amendments aimed at reducing plastic pollution.

View Article and Find Full Text PDF

Short Aromatic Blocks Enhance Styrene Conversion in Polymer Cubosome Formation via Polymerization-Induced Self-Assembly.

Macromol Rapid Commun

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.

Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!