IMA peptides function in iron homeostasis and cadmium resistance.

Plant Sci

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: November 2023

Iron (Fe), an essential micronutrient, participates in photosynthesis, respiration, and many other enzymatic reactions. Cadmium (Cd), by contrast, is a toxic element to virtually all living organisms. Both Fe deficiency and Cd toxicity severally impair crop growth and productivity, finally leading to human health issues. Understanding how plants control the uptake and homeostasis of Fe and combat Cd toxicity thus is mandatory to develop Fe-enriched but Cd-cleaned germplasms for human beings. Recent studies in Arabidopsis and rice have revealed that IRON MAN (IMA) peptides stand out as a key regulator to respond to Fe deficiency by competitively interacting with a ubiquitin E3 ligase, thus inhibiting the degradation of IVc subgroup bHLH transcription factors (TFs), mediated by 26 S proteasome. Elevated expression of IMA confers tolerance to Cd stress in both Arabidopsis and wheat by activating the iron deficiency response. Here, we discuss recent breakthroughs that IMA peptides function in the Fe-deficiency response to attain Fe homeostasis and combat Cd toxicity as a potential candidate for phytoremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2023.111868DOI Listing

Publication Analysis

Top Keywords

ima peptides
12
peptides function
8
homeostasis combat
8
combat toxicity
8
ima
4
iron
4
function iron
4
iron homeostasis
4
homeostasis cadmium
4
cadmium resistance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!