The water level fluctuation zone (WLFZ) is a distinctive and important component of the reservoir ecosystem. Due to periodic inundation, the fraction, spatial distribution, and chemical reactivity of soil phosphorus (P) within the WLFZ can potentially impact the loading of P into reservoir waters. However, a detailed study of this subject is lacking. In this study, the soil P in the WLFZ of the Three Gorges Reservoir, China, was examined using a combination of chemical sequential extraction, P NMR, and adsorption experiments. The results of chemical sequential extraction showed that HCl-P constituted the largest P pool among all P forms, with a mean concentration of 338 mg/kg. The content of HCl-P decreased significantly toward the dam, while the content of Res-P decreased in the opposite direction. The highest contents of most P forms and total P were observed at an elevation of 160 m. P NMR measurements showed that NaOH-EDTA P detectable in WLFZ soils at 145 m, 160 m, and 175 m elevation consisted mainly of orthophosphate and pyrophosphate, while NaOH-EDTA P contained phosphate monoesters and phosphate diesters, accounting for 1.4 % to 46.2 % of NaOH-EDTA TP. Adsorption experiments showed that soil P in the WLFZ was a potential P source for reservoir waters, with chemisorption being the dominant mechanism of P sequestration. The adsorption equilibrium concentration of WLFZ soil was lower at higher elevations (>170 m) compared to lower elevations (<150 m), exhibiting a decrease in the average maximum adsorption from 271 mg/kg to 192 mg/kg. Statistical analysis suggested that Ca and Fe content, particle size, elevation, and artificial restoration were key factors affecting the fraction and content of soil P in the WLFZ. Our findings contribute to an improved understanding of the behavior of soil P in the WLFZ of large reservoirs and its potential contribution to the reservoir waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.167000 | DOI Listing |
Sci Rep
January 2025
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.
View Article and Find Full Text PDFPlants (Basel)
January 2025
National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China.
The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!