The toxic effects of organic pollutants and nanoplastics on fish have been extensively studied, but there is limited research available on their combined toxicity to bivalves. This research aimed to investigate the accumulation and ecotoxicological impacts such as antioxidant capacity, histopathology and intestinal microbiota in white hard clam Meretrix lyrata, resulting from 7 days of single and mixture exposure to 3,3',4,4'-tetrachlorobiphenyl (PCB77, 0.1 mg/L) and polystyrene nanoplastics (PS-NPs, 80 nm, 1 mg/L). Our findings revealed that PS-NPs accumulated in various tissues such as the intestine, gill, mantle, foot, and siphon. And when compared to the PCB-PSNPs (PP) co-exposure group, the intestinal fluorescence intensity mediated by plastic particles in the PS-NPs (PS group) was significantly higher. The gill, digestive gland, and intestine were all damaged to varying extent by single exposure to PS-NPs or PCB77, according to histopathological analysis, which was aggravated by PP group. Moreover, the co-exposure induced a higher level of oxidative stress, which reflected by increase of activities of superoxide dismutase, catalase, glutamate oxaloacetate transaminase and glutamic-pyruvic transaminase and malondialdehyde content. In addition, the intestine microbial composition was dramatically altered by the combined exposure, reducing the abundance of probiotics such as Firmicutes, thereby posing a great threat to the health and metabolism of M. lyrata. In conclusion, our findings showed that PS-NPs and PCB77 co-exposure induced a higher toxicity to M. lyrata, including histopathological changes, altered antioxidant capacity and intestinal microbiota disruption. This study provides novel insights into PCB77 and PS-NPs' combined toxicity to marine organisms and its underlying molecular mechanisms of ecotoxicological effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167125DOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
12
polystyrene nanoplastics
8
oxidative stress
8
microbiota disruption
8
white hard
8
hard clam
8
clam meretrix
8
meretrix lyrata
8
combined toxicity
8
antioxidant capacity
8

Similar Publications

This study sought to compare bacterial abundance and diversity in milk and feces of healthy lactating women with patients suffering from lactation mastitis, explore the pathogenesis of lactation mastitis, and develop new ideas for its treatment and prevention from a microbiological perspective. A total of 19 lactating mastitis patients and 19 healthy lactating women were recruited. Milk and fecal Specimens were obtained from both groups, and microbial community structure was analyzed using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

is a common opportunistic pathogen that causes gastrointestinal diseases in livestock and poultry. Our preliminary research has demonstrated that administering oral yeast-cell microcapsule (YCM)-mediated DNA vaccines can effectively stimulate mucosal immunity, thereby preventing the occurrence of gastrointestinal diseases. In this study, the α-toxin gene was first cloned and the H126G and C-terminal (C247-370) mutations were created.

View Article and Find Full Text PDF

: Cannabidiol (CBD) is an approved treatment for childhood epilepsies and a candidate treatment for several other CNS disorders. However, it has poor oral bioavailability. We investigated the effect of a novel lipid formulation on its absorption in humans and on its tissue distribution in mice.

View Article and Find Full Text PDF

Microplastics pollution in freshwater systems is attracting increasing attention. However, our knowledge of its combined toxicity with heavy metals is scarce. In this study, was used as the model animal to study the combined poisoning mechanism of cadmium or microplastics on the digestive systems of tadpoles in freshwater.

View Article and Find Full Text PDF

Background: Since the gut microbiota is important for athlete health and performance, its optimization is increasingly gaining attention in sports nutrition, for example, with whole fermented foods. Sauerkraut is a traditional fermented food rich in pro-, pre-, and postbiotics, which has not yet been investigated in the field of sports nutrition.

Methods: To determine whether sauerkraut could be used for gut microbiota optimization in sports nutrition, a proof-of-concept study was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!