Although various research efforts have been made to produce a vascular-like network structure as scaffolds for tissue engineering, there are still several limitations. Meanwhile, no articles have been published on the direct embedding of cells within a glucose sensitive sacrificial hydrogel followed by three-dimensional (3D) bioprinting to fabricate vascular structures. In this study, the hydrogel composed of reversibly crosslinked poly(ethylene glycol) diacrylate and dithiothreitol with borax and branched polyethylenimine was used as the sacrificial hydrogel to fabricate vascular-like network structure. The component proportion ratio of the sacrificial hydrogel was optimized to achieve proper self-healing, injectable, glucose-sensitive, and 3D printing properties through the balance of boronate ester bond, hydrogen bond, and steric hinderance effect. The endothelial cells (ECs) can be directly embedded into sacrificial hydrogel and then bioprinted through a 110m nozzle into the neural stem cell (NSC)-laden non-sacrificial hydrogel, forming the customized EC-laden vascularized microchannel (one-step). The EC-laden sacrificial hydrogel was dissolved immediately in the medium while cells kept growing. The ECs proliferated well within the vascularized microchannel structure and were able to migrate to the non-sacrificial hydrogel in one day. ECs and NSCs interacted around the vascularized microchannel to form capillary-like structure and vascular-like structure expressing CD31 in 14 d. The sacrificial hydrogel conveniently prepared from commercially available chemicals through simple mixing can be used in 3D bioprinting to create customized and complex but easily removable vascularized structure for tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/acfac1 | DOI Listing |
Gels
December 2024
Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain.
Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and based on N-Vinyl Caprolactam (VCL) with the aim of modulating the adhesion of non-planar cell cultures. The fabrication process is based on the use as a mold of two-layer thick water-soluble polyvinyl alcohol (PVA) previously printed by Extrusion Material (MatEx).
View Article and Find Full Text PDFGels
December 2024
Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
Hydrogels, known for their outstanding water absorption, flexibility, and biocompatibility, have been widely utilized in various fields. Nevertheless, their application is still limited by their relatively low mechanical performance. This study has successfully developed a dual-network hydrogel with exceptional mechanical properties by embedding amino-functionalized polysiloxane (APSi) networks into a polyvinyl alcohol (PVA) matrix.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China. Electronic address:
Natural building blocks like chitins for self-assembling into complex materials have garnered significant interest owing to the inherent and diverse functionalities. However, challenges persist in the assembly of chitin-based composites, primarily stemming from chitin's poor solubility and compatibility. Herein, a quercetin-mediated multiple crosslinking strategy was developed to enhance compatibility by quercetin-mediated interfacial interactions between chitin and inorganic materials, achieving a series of chitin-based composite hydrogels with high performances.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
Bone, consisting of calcium phosphate minerals, rigid collagen fibrils, and acidic proteins, exhibits stiff and tough mechanical properties. On a molecular scale, covalent cross-linking in proteins and ionic interactions within proteins and at the protein-mineral boundary contribute to bone's toughness. In addition, hierarchical structures, like the sponge-like arrangement, are also crucial for the energy dissipation system in bone.
View Article and Find Full Text PDFNature
December 2024
Biological Design Center, Boston University, Boston, MA, USA.
Natural tissues are composed of diverse cells and extracellular materials whose arrangements across several length scales-from subcellular lengths (micrometre) to the organ scale (centimetre)-regulate biological functions. Tissue-fabrication methods have progressed to large constructs, for example, through stereolithography and nozzle-based bioprinting, and subcellular resolution through subtractive photoablation. However, additive bioprinting struggles with sub-nozzle/voxel features and photoablation is restricted to small volumes by prohibitive heat generation and time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!