We review the mathematical speed limits on quantum information processing in many-body systems. After the proof of the Lieb-Robinson Theorem in 1972, the past two decades have seen substantial developments in its application to other questions, such as the simulatability of quantum systems on classical or quantum computers, the generation of entanglement, and even the properties of ground states of gapped systems. Moreover, Lieb-Robinson bounds have been extended in non-trivial ways, to demonstrate speed limits in systems with power-law interactions or interacting bosons, and even to prove notions of locality that arise in cartoon models for quantum gravity with all-to-all interactions. We overview the progress which has occurred, highlight the most promising results and techniques, and discuss some central outstanding questions which remain open. To help bring newcomers to the field up to speed, we provide self-contained proofs of the field's most essential results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6633/acfaae | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!