High CO and sulfur tolerant proton exchange membrane fuel cell anodes enabled by "work along both lines" mechanism of 2,6-dihydroxymethyl pyridine molecule blocking layer.

J Colloid Interface Sci

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Energy Institute, Qingdao 266101, Shandong, China. Electronic address:

Published: January 2024

Proton exchange membrane fuel cells (PEMFCs) are hindered by their poor tolerance to CO and HS poisoning. Herein, we report an effective method, via engineering 2,6-dihydroxymethyl pyridine (DhmPy) molecule blocking layers on Pt surface, aiming to save the poisoning issue for PEMFC anode reaction. The PEMFCs assembled by this catalyst produce a power density of 1.18 W cm @ 2.0 A cm and 1.32 W cm @ 2.0 A cm, far exceeding commercial Pt/C after H/10 ppm CO poisoning and H/5 ppm HS poisoning tests, respectively. Density functional theory (DFT) indicates that a coronal molecule layer with a steric confinement height (1.82 Å), constructed by DhmPy, emerges more intensive adsorption energy compared to 2,6-pyridinedicarboxamide (DcaPy) and 2,6-diacetylpyridine (DAcPy), thereby more effectively inhibits the adsorption of large-sized CO and HS on Pt surface without affecting H traverse. This "work along both lines" mechanism with the resistance of both CO and HS provides a new and promising design thought for high CO and sulfur tolerant PEMFC anodes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.09.076DOI Listing

Publication Analysis

Top Keywords

high sulfur
8
sulfur tolerant
8
proton exchange
8
exchange membrane
8
membrane fuel
8
"work lines"
8
lines" mechanism
8
26-dihydroxymethyl pyridine
8
molecule blocking
8
tolerant proton
4

Similar Publications

Carbon quantum dots (CQDs) are a recently developed class of fluorescent nanoparticles made from carbon. Co-doping with heteroatoms such as nitrogen and sulfur improved the properties and generated a high quantum yield. In the proposed study, we utilized a simple, cost-effective, single-stage hydrothermal approach to produce extreme photoluminescence co-doped, nitrogen and sulfur, CQDs (N,S-CODs).

View Article and Find Full Text PDF

The replacement of the thermodynamically unfavorable anodic oxygen evolution reaction (OER) with a more favorable organic oxidation reaction, such as the anodic oxidation of benzylamine, has garnered significant interest in hybrid water electrolyzer cells. This approach promises the production of value-added chemicals alongside hydrogen fuel generation, improving overall energy efficiency. However, achieving high current density for benzylamine oxidation without interference from OER remains a challenge, limiting the practical efficiency of the electrolyzer cell.

View Article and Find Full Text PDF

The cratonic crust contains abundant mineral deposits of metals such as gold, copper and rare earths and is underlain by a thick mantle lithosphere rich in the volatiles carbon, sulfur and water. Although volatiles are known to be key components in metallogenesis, how and where they are distributed in the cratonic lithosphere mantle and their role in the initial enrichment of metals have not been sufficiently explored. Here we compile sulfur and copper contents of global cratonic peridotites, identifying sulfide-rich and copper-rich continental roots at depths of 160-190 km at cratonic margins.

View Article and Find Full Text PDF

The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.

View Article and Find Full Text PDF

Vegetables containing sulfur compounds promote trans-isomerization of unsaturated fatty acids in triacylglycerols during the cooking process.

Food Res Int

January 2025

Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan. Electronic address:

Growing evidence indicates that the intake of trans-fatty acids (TFAs) has been associated with a higher risk of cardiovascular disease; therefore, various industrial measures have been taken to reduce the amount of TFAs consumed. However, research on TFAs formed during cooking is limited. Isothiocyanates and polysulfides, which are widely distributed in various vegetables, have recently been shown to promote the cis-trans isomerization of double bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!