Cannabis contains a multitude of phytocannabinoids and terpenes in addition to its main psychoactive constituent, delta-9-tetrahydrocannabinol (D9-THC). It is believed that the combination of minor cannabinoids and terpenes with D9-THC may impact the subjective and physiological effects of D9-THC. In this study, select minor cannabinoids (cannabigerol [CBG], cannabidivarin [CBDV], cannabichromene [CBC], tetrahydrocannabivarin [THCV], cannabigerolic acid [CBGa], and cannabidiolic acid [CBDa]) and terpenes (beta-caryophyllene and linalool) were evaluated for their potential to decrease the interoceptive effects of D9-THC using drug discrimination methods. Male and female rats (=16; 50% female) were trained to discriminate D9-THC from vehicle. Following training, D9-THC was administered 45 min pre-session, followed by administration of a minor cannabinoid or terpene (or vehicle) 15 min pre-session. CBG, CBDV, CBC, and THCV were administered at doses of 3-30 mg/kg; CBGa and CBDa were administered at doses of 10-100 mg/kg; beta-caryophyllene and linalool were administered at doses of 10-30 mg/kg. Percentage of D9-THC responding (%) was calculated to assess changes to D9-THCs interoceptive effects. CBG, CBDV, CBC, THCV, CBGa, CBDa, beta-caryophyllene, and linalool had little effect on percent D9-THC responding in either sex. No compounds lowered percent D9-THC responding to 50% or below. THCV, CBC, CBDa, and beta-caryophyllene in combination with D9-THC decreased response rates compared with D9-THC alone. The minor cannabinoids and terpenes examined in the current study did not alter the discriminative stimulus effects of D9-THC. These results suggest that these compounds are unlikely to lower the psychoactive effects of D9-THC in human users.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/can.2023.0062 | DOI Listing |
Addiction
January 2025
Department of Psychology, York University, Toronto, Canada.
Aims: To establish the feasibility of using ecological momentary assessment (EMA) to estimate total quantities of Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) used across different forms of cannabis, and to assess the predictive validity of THC estimates for predicting acute cannabis-related consequences.
Design: 14-day EMA using a smartphone application to assess cannabis use in real time.
Setting: Canada.
J Nat Prod
January 2025
Charlotte's Web, 700 Tech Court, Louisville, Colorado 80027, United States.
Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
January 2025
Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.
The worldwide legalization of medicinal cannabis has led to an increased use of products made by commercial operators. These products often contain minor cannabinoids such as cannabinol (CBN) which are advertised to improve sleep. Products are also available in which CBN is combined with conventional therapies, with a common product containing both CBN and the widely used sleep-aid melatonin.
View Article and Find Full Text PDFFitoterapia
December 2024
Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 3, 28100 Novara, NO, Italy. Electronic address:
Although Cannabis sativa L. is well known for being prolific in phytocannabinoids, their biosynthetic modular mechanism is ruled by a main enzyme: the geranyltransferase able to pursue the C-isoprenylation of olivetolic acid with the geranyldiphosphate. However, the existence of more than 160 meroterpenoids can be partially explained by a side degree of promiscuity of the geranyltransferase itself, able to recognise different substrate than the ordinary ones.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
March 2025
Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
The production of cannabinoid compounds such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabichromene (CBC) with potential pharmaceutical applications is growing sharply. However, challenges such as the low yield of minor cannabinoids, legal restrictions on cultivation, and the complexity and cost of purification from the Cannabis sativa plant necessitate a biotechnological approach. Since the biosynthetic pathway is disclosed, cannabinoids have been produced in yeast, insect cells and plants mainly by the heterologous expression of tetrahydrocannabinol acid synthase (THCAS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!