A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decision-Change Informed Rejection Improves Robustness in Pattern Recognition-Based Myoelectric Control. | LitMetric

Post-processing techniques have been shown to improve the quality of the decision stream generated by classifiers used in pattern-recognition-based myoelectric control. However, these techniques have largely been tested individually and on well-behaved, stationary data, failing to fully evaluate their trade-offs between smoothing and latency during dynamic use. Correspondingly, in this work, we survey and compare 8 different post-processing and decision stream improvement schemes in the context of continuous and dynamic class transitions: majority vote, Bayesian fusion, onset locking, outlier detection, confidence-based rejection, confidence scaling, prior adjustment, and adaptive windowing. We then propose two new temporally aware post-processing schemes that use changes in the decision and confidence streams to better reject uncertain decisions. Our decision-change informed rejection (DCIR) approach outperforms existing schemes during both steady-state and transitions based on error rates and decision stream volatility whether using conventional or deep classifiers. These results suggest that added robustness can be gained by appropriately leveraging temporal context in myoelectric control.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3316599DOI Listing

Publication Analysis

Top Keywords

myoelectric control
12
decision stream
12
decision-change informed
8
informed rejection
8
rejection improves
4
improves robustness
4
robustness pattern
4
pattern recognition-based
4
recognition-based myoelectric
4
control post-processing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!