Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Image classification plays an important role in remote sensing. Earth observation (EO) has inevitably arrived in the big data era, but the high requirement on computation power has already become a bottleneck for analyzing large amounts of remote sensing data with sophisticated machine learning models. Exploiting quantum computing might contribute to a solution to tackle this challenge by leveraging quantum properties. This article introduces a hybrid quantum-classical convolutional neural network (QC-CNN) that applies quantum computing to effectively extract high-level critical features from EO data for classification purposes. Besides that, the adoption of the amplitude encoding technique reduces the required quantum bit resources. The complexity analysis indicates that the proposed model can accelerate the convolutional operation in comparison with its classical counterpart. The model's performance is evaluated with different EO benchmarks, including Overhead-MNIST, So2Sat LCZ42, PatternNet, RSI-CB256, and NaSC-TG2, through the TensorFlow Quantum platform, and it can achieve better performance than its classical counterpart and have higher generalizability, which verifies the validity of the QC-CNN model on EO data classification tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2023.3312170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!