How to Grow a Flat Leaf.

Phys Rev Lett

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: September 2023

Growing a flat lamina such as a leaf is almost impossible without some feedback to stabilize long wavelength modes that are easy to trigger since they are energetically cheap. Here we combine the physics of thin elastic plates with feedback control theory to explore how a leaf can remain flat while growing. We investigate both in-plane (metric) and out-of-plane (curvature) growth variation and account for both local and nonlocal feedback laws. We show that a linearized feedback theory that accounts for both spatially nonlocal and temporally delayed effects suffices to suppress long wavelength fluctuations effectively and explains recently observed statistical features of growth in tobacco leaves. Our work provides a framework for understanding the regulation of the shape of leaves and other leaflike laminar objects.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.098401DOI Listing

Publication Analysis

Top Keywords

long wavelength
8
grow flat
4
flat leaf
4
leaf growing
4
growing flat
4
flat lamina
4
lamina leaf
4
leaf impossible
4
feedback
4
impossible feedback
4

Similar Publications

Reversible light-responsive protein hydrogel for on-demand cell encapsulation and release.

Acta Biomater

January 2025

Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA. Electronic address:

The design of biomaterials that can reconfigure on-demand in response to external stimuli is an emerging area in materials research. However, achieving reversible assembly of protein-based biomaterials by light input remains a major challenge. Here, we present the engineering of a new protein material that is capable of switching between liquid and solid state reversibly, controlled by lights of different wavelengths.

View Article and Find Full Text PDF

To compare the long-term efficacy and safety of intense pulsed light (IPL) treatments using a 590-nm and an acne filter. In this prospective, randomized, paired-eye trial study, 30 patients with moderate and severe meibomian gland dysfunction (MGD) were followed up for at least one month after their last treatment. Group A received IPL treatment with an acne filter, a type of notch filter that blocks wavelengths between 600 and 800 nm, allowing IPL to emit wavelengths between 400-600 nm and 800-1200 nm.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.

View Article and Find Full Text PDF

Background: Poikiloderma of Civatte is a benign skin condition characterized by reticulate erythema and hyperpigmentation in sun-exposed areas, predominantly on the neck, cheeks, and chest. Chronic UV exposure leads to vascular proliferation and red cell extravasation resulting in hemosiderin and melanin deposition. While many light-based modalities have been utilized to treat the disorder, the significant vascularity makes it ideally suited for treatment with vascular lasers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!