Pseudocapacitors promise to fill the gap between traditional capacitors and batteries by delivering reasonable energy densities and power densities. In this work, pseudocapacitive charge storage properties are demonstrated for two isostructural oxides, Sr LaFeMnO and Sr LaCoMnO . These materials comprise spatially separated bilayer stacks of corner sharing BO units (B=Fe, Co or Mn). The spaces between stacks accommodate the lanthanum and strontium ions, and the remaining empty spaces are available for oxide ion intercalation, leading to pseudocapacitive charge storage. Iodometric titrations indicate that these materials do not have oxygen-vacancies. Therefore, the oxide ion intercalation becomes possible due to their structural features and the availability of interstitial sites between the octahedral stacks. Electrochemical studies reveal that both materials show promising energy density and power density values. Further experiments through fabrication of a symmetric two-electrode cell indicate that these materials retain their pseudocapacitive performance over hundreds of galvanostatic charge-discharge cycles, with little degradation even after 1000 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202300463 | DOI Listing |
Inorg Chem
January 2025
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
CaCuFeReO and LaCuFeReO quadruple perovskite oxides are well known for their high ferrimagnetic Curie temperatures and half-metallic electronic structures. By A-site chemical substitution with lower valence state Na, an isostructural compound NaCuFeReO with both A- and B-site ordered quadruple perovskite structures in -3 symmetry was prepared using high-pressure and high-temperature techniques. The X-ray absorption study demonstrates the valence states to be Cu, Fe, and Re.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
This study focuses on the use of three isostructural NO donor ligands, specifically known to form complexes with copper ions, to chelate Cu(II) from aqueous solutions. The corresponding Cu(II) complexes feature a dinuclear copper core mimicking the active site of natural superoxide dismutase (SOD) enzymes while also creating a coordination environment favorable for catalase (CAT) activity, being thus appealing as catalytic antioxidant systems. Given the critical role of copper dysregulation in the pathophysiology of Alzheimer's disease (AD), these complexes may help mitigate the harmful effects of free Cu(II) ions: the goal is to transform copper's reactive oxygen species (ROS)-generating properties into beneficial ROS-scavenging action.
View Article and Find Full Text PDFDalton Trans
December 2024
College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
The hetero photooxidation of sulfide under aqueous conditions is of great importance in the green synthesis of sulfoxide. This process requires a type of solid photocatalyst with the properties of high porosity and water stability, as well as photosensitivity. Herein, a stable Ir-Zr-MOF material (compound 1) with high porosity is assembled from two linear linkers of a 2-phenylquinoline-4-carboxylic acid-Ir(III) complex (Irphen) and 4,4'-stilbenedicarboxylic acid (HSDC), and a Zr cluster.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia en Química (UEQ)", Avda. Fuente Nueva s/n, Granada 18071, Spain.
The thermodynamically controlled self-assembly of bis-bidentate quaterpyridine ligand, L = 2,2':5',5″:2″,2‴-quaterpyridine, with Cr and subsequent oxidation to Cr yields the first photoluminescent tetrahedral [CrL] molecular cage. Single-crystal X-ray diffraction reveals the presence of two homochiral cages (ΛΛΛΛ and ΔΔΔΔ) in the unit cell that crystallize as a racemic mixture. Additionally, a PF anion is observed inside the cavity, in line with isostructural cages built with Ni or Fe.
View Article and Find Full Text PDFMolecules
October 2024
School of Medicine, Xizang Minzu University, Xianyang 712000, China.
The solvothermal reactions involving cobalt ions with 5-methylisophthalic acid (HMIP) and 1,3-bis(2-methylimidazol)propane (BMIP) yielded two cobalt(II) organic frameworks: {[Co(MIP)(BMIP)]·1/2DMA} () and {[Co(MIP)(BMIP)]·(EtOH)·HO]} () where DMA represents N,N-dimethylacetamide and EtOH signifies ethyl alcohol. Single-crystal X-ray diffraction analyses reveal that and possess an isomorphic structure, featuring a unique 2-fold interpenetration of 3D frameworks in a parallel manner. Notably, both and demonstrate remarkable performance in electrocatalytic oxygen evolution reactions and exhibit exceptional photocatalytic degradation capabilities against a model comprising three distinct dyes: rhodamine B, methyl orange, and methyl blue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!