A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

IAR4 mutation enhances cadmium toxicity by disturbing auxin homeostasis in Arabidopsis thaliana. | LitMetric

IAR4 mutation enhances cadmium toxicity by disturbing auxin homeostasis in Arabidopsis thaliana.

J Exp Bot

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.

Published: January 2024

Cadmium (Cd) is highly toxic to plants, but the targets and modes of toxicity remain unclear. We isolated a Cd-hypersensitive mutant of Arabidopsis thaliana, Cd-induced short root 2 (cdsr2), in the background of the phytochelatin synthase-defective mutant cad1-3. Both cdsr2 and cdsr2 cad1-3 displayed shorter roots and were more sensitive to Cd than their respective wild type. Using genomic resequencing and complementation, IAR4 was identified as the causal gene, which encodes a putative mitochondrial pyruvate dehydrogenase E1α subunit. cdsr2 showed decreased pyruvate dehydrogenase activity and NADH content, but markedly increased concentrations of pyruvate and alanine in roots. Both Cd stress and IAR4 mutation decreased auxin level in the root tips, and the effect was additive. A higher growth temperature rescued the phenotypes in cdsr2. Exogenous alanine inhibited root growth and decreased auxin level in the wild type. Cadmium stress suppressed the expression of genes involved in auxin biosynthesis, hydrolysis of auxin-conjugates and auxin polar transport. Our results suggest that auxin homeostasis is a key target of Cd toxicity, which is aggravated by IAR4 mutation due to decreased pyruvate dehydrogenase activity. Decreased auxin level in cdsr2 is likely caused by increased auxin-alanine conjugation and decreased energy status in roots.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erad366DOI Listing

Publication Analysis

Top Keywords

iar4 mutation
12
pyruvate dehydrogenase
12
decreased auxin
12
auxin level
12
auxin homeostasis
8
arabidopsis thaliana
8
wild type
8
decreased pyruvate
8
dehydrogenase activity
8
mutation decreased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!