Spiking neural networks (SNNs), as the third generation of neural networks, are based on biological models of human brain neurons. In this work, a shallow SNN plays the role of an explicit image decoder in the image classification. An LSTM-based EEG encoder is used to construct the EEG-based feature space, which is a discriminative space in viewpoint of classification accuracy by SVM. Then, the visual feature vectors extracted from SNN is mapped to the EEG-based discriminative features space by manifold transferring based on mutual k-Nearest Neighbors (Mk-NN MT). This proposed "Brain-guided system" improves the separability of the SNN-based visual feature space. In the test phase, the spike patterns extracted by SNN from the input image is mapped to LSTM-based EEG feature space, and then classified without need for the EEG signals. The SNN-based image encoder is trained by the conversion method and the results are evaluated and compared with other training methods on the challenging small ImageNet-EEG dataset. Experimental results show that the proposed transferring the manifold of the SNN-based feature space to LSTM-based EEG feature space leads to 14.25% improvement at most in the accuracy of image classification. Thus, embedding SNN in the brain-guided system which is trained on a small set, improves its performance in image classification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-023-00861-zDOI Listing

Publication Analysis

Top Keywords

feature space
20
image classification
16
neural networks
12
lstm-based eeg
12
manifold transferring
8
spiking neural
8
visual feature
8
extracted snn
8
eeg feature
8
image
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!