Rationale: Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood.
Objectives: The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment.
Methods: Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively.
Results: Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin.
Conclusions: Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858826 | PMC |
http://dx.doi.org/10.1007/s00210-023-02661-9 | DOI Listing |
J Intensive Care
January 2025
Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.
The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Theriogenology Department, Faculty of Veterinary Medicine, New-Valley University, New Valley, 725211, Egypt.
Background: Saidi sheep are one of the most important farm animals in Upper Egypt, particularly in the Assiut governorate. Since they can provide meat, milk, fiber, and skins from low-quality roughages, sheep are among the most economically valuable animals bred for food in Egypt. Regarding breeding, relatively little is known about the Saidi breed.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Respiratory Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
Background: Acute lung injury (ALI) is a severe condition with multifaceted causes, including inflammation and oxidative stress. This research investigates the influence of m6A (N6-methyladenosine) modification on GBP4, a protein pivotal for macrophage polarization, a critical immune response in ALI.
Methods: Utilizing a mouse model to induce ALI, the study analyzed GBP4 expression in alveolar macrophages.
BMC Pulm Med
January 2025
Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7618868367, Iran.
Background: Paraquat (PQ) is a widely used pesticide, can cause severe intoxication and respiratory failure. Myrtenol (Mrl), an essential oil derived in various plants, exhibits several biological properties, including anti-inflammatory and antioxidant activities. This study aims to investigate the protective potential of Mrl against oxidative stress and inflammation caused by PQ exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!