Pentafluorobenzene (PFB) represents a class of aromatic fluorine compounds employed exclusively across a spectrum of chemical and biological applications. PFBs are credited with developing various chemical synthesis techniques, networks and biopolymers, bioactive materials, and targeted drug delivery systems. The first part of this review delves into recent developments in PFB-derived molecules for diagnostic purposes. In the latter segment, PFB's role in the domain of theragnostic applications is discussed. The review elucidates different mechanisms and interaction strategies applied in leveraging PFBs to formulate diagnostic and theragnostic tools, substantiated by proper examples. The utilization of PFBs emerges as an enabler, facilitating manifold reactions, improving materials' properties, and even opening avenues for explorative research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.3c00676 | DOI Listing |
ACS Appl Bio Mater
October 2023
Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea.
Chemistry
April 2023
Tsukuba Research Center for Energy Materials Science (TREMS) Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
Diphenylanthracene (DPA) and its derivatives are promising semiconducting materials for p-type organic-field-effect transistors (OFETs). In this study, to develop n-type semiconducting materials with an anthracene core, pentafluorobenzene was introduced into anthracene by C-H direct arylation, enabling the synthesis of various bis(pentafluorophenyl)anthracene (DPA-F) derivatives. The high reactivity of the pentafluorobenzene C-H bond allows direct arylation for synthesizing DPA-F derivatives in a single step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!